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Abstract

We consider a dynamic assignment queueing model with multiple packet classes, which has a
number of queues, each with its own server. This model arises from the output buffer control of an
ATM-based packet switching system, which is connected to another system via multiple links. Each
packet is divided into cells and transmitted by cell-by-cell transmission through the links. Such packet
arrival processes can be modeled as Poisson cluster arrival processes. An arriving packet is assigned
to one of the queues according to a dynamic packet assignment scheme, which is a variation of the
shortest queue policy and tries to assign buffer space and/or transmission bandwidth fairly to each
class when the system is congested. We derive an approximation of the packet loss probability by
using a decomposition method and an asymptotic of the cell loss probability. Its accuracy is examined
in comparison with simulation results. The results of this paper can be used for dimensioning the
buffer sizes of the ATM-based packet switching systems.

1 Introduction

Recent developments in computer communication require higher speed interconnection services between
local area networks (LANs) over wide geographical areas. One way to provide these services is to build a
packet overlay network on top of an asynchronous transfer mode (ATM) backbone network by using ATM-
based packet switching systems, whose typical examples are connectionless servers (CLSs) [3, 4, 13, 17].
In such a packet overlay network, ATM-based packet switching systems are interconnected via permanent
virtual circuits (PVCs). Each packet is divided into cells of 53 bytes in data length including the headers
and is transmitted by cell-by-cell transmission through the PVCs. If ATM adaptation layer (AAL) type
3 or type 4 is used in the network, the first and last cells of each packet can be detected by using the
values of the segment types (STs) of cells, and if AAL type 5 is used, those cells can be detected by
using the values of the payload types (PTs) of cells. Hence the ATM-based packet switching systems can
identify individual packets without reassembling the packets. Furthermore, by reading packet destination
addresses directly from the first cells of the packets, they can also route and forward the packets by high-
speed cell-by-cell processing without reassembling the packets.

When we attempt to build such a packet overlay network, we must sometimes use multiple PVCs
to connect ATM-based packet switching systems because of technological and/or economical restrictions
[5, 7] (Fig. 1). In this case, a packet assignment scheme for multiple PVCs is necessary to construct
an output buffer control mechanism used in the ATM-based packet switching system. Here, assigning a
packet to a queue corresponds to assigning all the cells of the packet to the same queue1. Such an output

∗This is a draft version of a paper that appeared in Journal of the Operations Research Society of Japan, 41, 2, pp.
196-213 (1998).

1Cell assignment schemes of this type make it possible for ATM-based packet switching systems to identify each packet,
whose cells are transmitted through a common PVC, by using the values of the STs or the PTs of cells. Cell assignment
schemes that can assign the cells of each packet to different queues are the other type, and they require ATM-based packet
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Figure 1: A packet overlay network.
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Figure 2: A parallel server model.

buffer control mechanism together with multiple PVCs can be modeled as a parallel server model, where
servers correspond to the PVCs and each server has its own cell buffer (Fig. 2). One of the typical packet
assignment schemes is the shortest queue policy [19], which is a dynamic packet assignment scheme and
randomly assigns an arriving packet to one of the shortest queues. Note that in this paper the queue
length is counted including the cell being served at the server. This policy intends to use the servers more
efficiently and to make the packet loss probability smaller.

However, when the shortest queue policy is used and one user sends many packets at a time, packet
delays for other users may become longer and their many packets may be lost. Hence we consider the
case of multiple packet classes, each corresponding to a user, and a variation of the shortest queue policy
in order to assign buffer space and/or transmission bandwidth fairly to each class when the system is
congested. Here each class can be identified by, for example, the source addresses (SAs) of the packets,
their destination addresses (DAs), and the SA-DA pairs, and it can also be identified by the virtual
channel identifiers (VCIs), the virtual path identifiers (VPIs), and/or the multiplexing identifiers (MIDs)
of the cells of the packets [1, 2]. In our packet assignment scheme, at the arrival of a packet if there exist
no idle servers and there exist packets of the same class in the system, the arriving packet is assigned
to the queue to which the latest packet of the same class was assigned. The scheme is composed of the
following cell-based packet assignment rules.

(i) At the arrival of the first cell of a packet if there exist no cells of the same class in the system, the
cell is randomly assigned to one of the shortest queues.

(ii) At the arrival of the first cell of a packet if there exist cells of the same class in the system and if
there are no idle servers, then the cell is assigned to the queue to which the latest packet of the
same class was assigned.

(iii) At the arrival of the first cell of a packet if there exist cells of the same class in the system and if
there exist idle servers, then the cell is randomly assigned to one of the queues of the idle servers.

(iv) A cell which is not the first cell of a packet is assigned to the same queue as the first cell of the
packet.

switching systems to identify the individual packets whose cells may be transmitted through different PVCs [7]; This makes
it difficult to construct dynamic assignment schemes of the latter type. Hence we consider only those of the former type in
this paper.
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Rule (i) corresponds to the shortest queue policy. Rule (ii) makes packets of each class apt to be
assigned to just one queue when the system becomes congested, and these rules lead to fairness among
classes. Rule (iii) contributes to using servers more efficiently. Rule (iv) makes this cell assignment
scheme a packet assignment scheme.

The input process of each class can be modeled as a Poisson cluster arrival process [14]. Packets,
which are called clusters in the Poisson cluster arrival process, arrive at the system via a Poisson process,
and each packet is decomposed into a certain number of cells, which are called customers in that arrival
process. These cells of the packet are usually assumed to arrive at the system with constant intervals2

and are sent out through a common PVC. We approximately analyze this parallel server model with
finite buffers and derive an approximation for the packet loss probability. Here a packet is assumed to
be lost when at least one cell of the packet is lost in the network, since that packet cannot be assembled
at the destination.

The rest of the paper is constructed as follows. In Section 2 we describe our parallel server model
in detail. In Section 3 we introduce an approximate model for a single queue of the original model. In
Section 4 we analyze the approximate model and obtain an approximation for the packet loss probability.
In Section 5 the accuracy of the approximation is discussed through numerical experiments, and an
improvement of the approximation of the packet loss probability is proposed.

2 Model description

Here we present a rigorous definition of our parallel server model with multiple packet classes. Our model
is described as follows (see Fig. 2).

There are S queues. Each queue behaves like a ·/D/1/K model, where service times are equal to
a constant ∆ (> 0), which corresponds to the time taken to transmit one cell, and K is the buffer size
including the service position. In each queue cells are served according to the first-in-first-out (FIFO)
discipline.

Let N be the number of packet classes. We only consider a symmetric case, where the arrival processes
of individual classes are mutually independent and subject to a common stochastic law. Packets in each
class arrive at the system via a homogeneous Poisson process with intensity λ0. The sizes (the number of
cells) of packets in all classes are i.i.d. random variables and we denote by X0 a generic random variable
representing the packet size. Let the time between consecutive cell arrivals in the same packet be equal to
a constant δ (> 0). Here 1/δ corresponds to the cell transmission speed of PVCs connecting user routers
to ATM-based packet switching systems, while 1/∆ corresponds to that of PVCs interconnecting the
ATM-based packet switching systems. The former speed is usually less than or equal to the latter one;
However we sometimes use PVCs of the same speed to build a packet overlay networks. Hence we assume
that they have the same value (i.e. ∆ = δ). We will refer to an arrival process of this type as a Poisson
cluster arrival process [14] and denote by MB(X,D), where B(X,D) represents the characteristic of each
packet as in [11]; X means that the distribution of the packet (cluster) size is general and D means that
the cell (customer) arrival intervals in the packet are determinate. Packets (and hence cells) are assigned
to one of the queues according to the shortest-queue-type packet assignment scheme described in the
previous section. A cell is lost if it arrives at the system when the buffer of the assigned queue is full. A
packet is considered to be lost if at least one cell of the packet is lost.

For convenience of description, in the following sections, ∆ and δ are set equal to the unit time length
(i.e. ∆ = δ = 1).

3 Decomposition of the model

The original model introduced in the preceding section is very complicated, and it seems difficult to get
exact results for performance measures. In order to derive an approximation for the packet loss probabil-
ity in the next section, here we shall decompose the original model into S independentMB(X,D)/D/1/K
models each of which approximately describes the stochastic behavior of the corresponding queue. Here-
after we assume that all processes considered in this section are in steady states.

2In [14], these interarrival times are assumed to be i.i.d. random variables.
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For j = 1, 2, ..., S, let Ãj(t) be the number of packets that are assigned to queue j during the interval
(0, t], α̃j(t) be the stochastic intensity of Ãj(t) at time t, and Lj(t) be the queue length of queue j,
or equivalently the number of cells being served or waiting in queue j, at time t. First, we derive the
conditional expectation of α̃j(t) given that Lj(t) > 0; E[α̃j(t) |Lj(t) > 0] is decomposed as follows:

E [ α̃j(t) | Lj(t) > 0]

= E

[
α̃j(t)

∣∣∣∣∣Lj(t) > 0,
S∏

�=1

1(L�(t) > 0) = 0

]
Pr

(
S∏

�=1

1(L�(t) > 0) = 0

∣∣∣∣∣ Lj(t) > 0

)

+E

[
α̃j(t)

∣∣∣∣∣
S∏

�=1

1(L�(t) > 0) = 1

]
Pr

(
S∏

�=1

1(L�(t) > 0) = 1

∣∣∣∣∣ Lj(t) > 0

)
. (1)

The conditions “Lj(t) > 0” and “
∏S

�=1 1(L�(t) > 0) = 0” mean that, at time t, there exist empty queues
but queue j is not empty. According to Rules (i) and (iii), the expectation in the first term on the right
side of equation (1) is, therefore, zero. The expectation in the second term is given as

E

[
α̃j(t)

∣∣∣∣∣
S∏

�=1

1(L�(t) > 0) = 1

]
=

N

S
λ0 , (2)

because the summation of the left side of equation (2) on j is equal to Nλ0 and S queues are symmetric.
Substituting (2) into (1), the conditional expectation of α̃j(t) is given as

E [α̃j(t) |Lj(t) > 0] =
N

S
λ0 Pr

(
S∏

�=1

1(L�(t) > 0) = 1

∣∣∣∣∣ Lj(t) > 0

)
. (3)

Note that, since Rule (ii) is not used for deriving equation (3) explicitly, another expression for the
expectation of α̃j(t) seems to be needed to approximate the packet arrival rate under the condition where
the system is congested, in other words, where the value of Lj(t) is large. This will be discussed again in
Subsection 5.2.

The conditional probability on the right side of formula (3) is represented as

Pr

(
S∏

�=1

1(L�(t) > 0) = 1

∣∣∣∣∣ Lj(t) > 0

)
=

Pr
(∏S

�=1 1(L�(t) > 0) = 1
)

Pr(Lj(t) > 0)
. (4)

Since S queues are symmetric, the denominator on the right side of this equation is given by

Pr(Lj(t) > 0) = (1− b
(K)
C )

N

S
λ0E[X0], (5)

where b(K)
C denotes the cell loss probability. The numerator is the probability that all the servers are

busy, and its approximation is derived as follows. Consider a modification of the parallel server model,
where each packet is regarded as one customer and his service time is equal to the size of the packet. In
this modified model, customers of each class arrive via a Poisson process with intensity λ0, an arriving
customer is assigned to one of the queues according to the same scheme, and each queue behaves like a
·/G/1/K . Here we consider a case where the capacities of the buffers are infinite. Since, in the original
model, cell arrival intervals in each packet are equal to the constant service time, the probability that all
the servers are busy in the original model is equal to that probability in the modified model. Hence we
approximate that probability of the original model by using the probability that all the servers are busy
in anM/G/S/∞ model, where the arrival rate is equal to (1−b(K)

C )Nλ0 and the service time distribution
is the same as that of X0. From [9], this probability of the M/G/S/∞ model can be approximated by
using the corresponding probability of anM/M/S/∞ model, where the arrival rate is the same as that of
the M/G/S/∞ model and the mean service time is equal to E[X0]. As a result, we obtain the following
approximation:

Pr

(
S∏

�=1

1(L�(t) > 0) = 1

)
≈ SãS

0 p̃0
S! (S − ã0)

, (6)
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where

ã0 ≡ (1− b
(K)
C )N λ0 E[X0], (7)

p̃0 ≡

S−1∑

j=0

ãj
0

j!
+
ãS
0

S!
S

S − ã0




−1

. (8)

From formulas (4), (5), and (6), the following approximation is obtained.

Pr

(
S∏

�=1

1(L�(t) > 0) = 1

∣∣∣∣∣ Lj(t) > 0

)
≈ SãS−1

0 p̃0
(S − 1)! (S − ã0)

. (9)

A decomposed MB(X,D)/D/1/K model is given as follows: let λ be the packet arrival intensity in the
model. From formulas (3) and (9), λ is given by

λ ≡ Nλ0ã
S−1
0 p̃0

(S − 1)! (S − ã0)
. (10)

The distribution of packet sizes and the value of service times of cells in the decomposed model are the
same as those in the original model.

E [α̂j(t) |Lj(t) > 0] is the conditional mean arrival intensity of packets given that Lj(t) > 0; however,
we use the same value for the case when Lj(t) = 0. The reason is as follows. From Remark 1 below, both
the cell loss probability and the packet loss probability are independent of the packet arrival intensity
during idle periods because the packet arrival processes are assumed to be Poissonian and the beginning
point of each busy period is a regeneration point for the cell arrival processes.

[Remark 1] Consider a G/GI/c/K model. Let Â(t) be the number of customers that arrive at the
system during an interval (0, t] and V̂n be the service time of the nth arriving customer. Suppose that
the beginning point of each busy period is a regeneration point for Â(t). Let B̂(t) be the number of
customers that overflow from the system during an interval (0, t]. Since B̂(t) can be generated from
{Â(s), s ≤ t} and {V̂n, n ≤ Â(t)}, the beginning point of each busy period is also a regeneration point
for B̂(t). Therefore, from the property of renewal-reward processes [8], the overflow probability b̂ is given
by

b̂ = lim
t→∞

B̂(t)
Â(t)

=
E[B̂0]
E[Â0]

,

where Â0 is the number of customers that arrive during a busy cycle (a busy period and the subsequent
idle period), and B̂0 is the number of customers that overflow during the busy cycle. Because all the
arrivals and overflows in each busy cycle occur in the busy period, both Â0 and B̂0 are independent of
the probability law of Â(t) during the idle period of the busy cycle. Therefore, b̂ is also independent of
the probability law of Â(t) during idle periods. ✷

4 An approximate analysis of a discrete-time version of the
MB(X,D)/D/1/K model

In this section, we consider a discrete time version of theMB(X,D)/D/1/K model; cells arrive and depart
only at discrete time points {0, 1, 2, ... }. We further assume that departures occur before arrivals at the
same time point. For the case where the distribution of X0 is geometric, the cell loss probability was
derived in [11]. Here we assume that X0 is bounded above and do not assume that its distribution is
geometric. An approximation of the packet loss probability is derived in the following three steps: (1)
An upper bound of the cell loss probability is obtained. (2) Using this upper bound, an approximation
of the cell loss probability is derived. (3) The packet loss probability is approximated using the cell loss
probability.
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4.1 Upper bound of the cell loss probability

Let aP (n) be the number of packets arriving at time n. Then {aP (n)} are i.i.d. random variables subject
to a Poisson distribution with mean λ. Let Xj be the size (the number of cells) of the jth arriving packet
and assume that each Xj has the same upper bound gmax. Packets are numbered sequentially, with the
first packet that arrives after time zero having the number zero. Let ρ be the traffic intensity defined as
ρ ≡ λE[X0]. Let aC(n) be the number of cells that arrive at time n. When the jth packet arrives at time
n, its cells arrive sequentially at n, (n+ 1), ..., (n+Xj − 1). Let IP (n) be the number of active packets
that have cells arriving after time n and RC(i, n) be the number of residual cells of the ith active packet
for i = 1, 2, ..., IP (n); for example, if a packet of size Xk arrives at time n when the system is empty,
then RC(1, n) = Xk − 1, RC(1, n+ 1) = Xk − 2, and so on. Let Z(n) be a vector indicating the number
of active packets and the number of residual cells:

Z(n) = (IP (n); (RC(1, n), RC(2, n), . . . , RC(IP (n), n) ). (11)

Since {Z(n)} forms a Markov chain and aC(n) satisfies equation

aC(n) = aP (n) + IP (n− 1), (12)

{aC(n)} can be considered as a discrete-time Markov Aadditive process (MAP) with the underlying
Markov chain {Z(n)}.

We first analyze an MB(X,D)/D/1/∞ model, which has the same arrival process and service times
as the MB(X,D)/D/1/K model, but the buffer capacity is infinite. For each n ≥ 0, consider a queueing
process that began at time −n, and let L0(n) be the number of cells in the system at time zero. We
introduce the following notations:

M0(n) ≡ L0(n)− aC(0) for n ≥ 0, (13)
u(n) ≡ aC(−n)− 1 for n ≥ 0, (14)

U(n) ≡
n∑

j=1

u(j) for n ≥ 1, U(0) = 0. (15)

From the definition of the process {u(n)}, this process becomes a discrete-time MAP with the underlying
Markov chain {Z(n)}. Renumbering the states of {Z(n)} such that the state space becomes Z+, the
kernel of the MAP and its transform are defined by

Pij(k) ≡ Pr(Z(n+ 1) = j, u(n+ 1) = k | Z(n) = i) = fij(k) pij , (16)

P̃ij(θ) ≡
∞∑

k=−c

eθkfij(k)pij = f̃ij(θ)pij , (17)

where

fij(k) ≡ Pr(u(n+ 1) = k |Z(n+ 1) = j, Z(n) = i) , (18)
pij ≡ Pr(Z(n+ 1) = j | Z(n) = i) , (19)

f̃ij(θ) ≡
∞∑

k=−c

eθk fij(k) . (20)

L0(n) and M0(n) are represented by U(·) in the following manner:
L0(n) = [u(1) + [u(2) + · · · + [u(n)]+ ]+ ]+ + aC(0)

= max
0≤j≤n

U(j) + aC(0), (21)

M0(n) = max
0≤j≤n

U(j). (22)

Under some suitable conditions for {aC(n)}, the stationary versions of L0(n) andM0(n), L0 and M0, are
obtained as follows:

M0 = lim
n→∞M0(n) = sup

n∈Z+
U(n) , (23)

L0 = lim
n→∞L0(n) = M0 + aC(0) . (24)
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We further introduce the following notations:

Λ(n; θ) ≡ log E[eθU(n)] for n > 0 and θ ∈ R, (25)
Λ(θ) ≡ lim

n→∞n−1Λ(n; θ) for n > 0 and θ ∈ R, (26)

θ∗ ≡ sup{θ |Λ(θ) ≤ 0}. (27)

Then, using the results of [6], an upper bound of the tail distribution of M0 is given by the following
theorem.

[Theorem 1] [6] If E[ u(1) ] = ρ− 1 < 0, then

Pr(M0 ≥ k) ≤ ϕ(θ) e−θk for k > 0 and θ ∈ [0, θ∗], (28)

where ϕ(θ) is the essential supremum

ϕ(θ) ≡ sup
{
x : Pr

(
1(u(n) > 0)
vZ(n) (θ)

> x

)
> 0
}
, (29)

and (vi(θ)) is the right eigenvector of the matrix (P̃ij(θ)) corresponding to the simple maximal eigenvalue
eΛ(θ). The vector (vi(θ)) is positive and bounded above. ✷

Since [L0 − 1]+ = [M0 + u(0)]+
d=M0, an upper bound of the tail distribution of L0 is given as

Pr(L0 ≥ k) = Pr([L0 − 1]+ ≥ k − 1)
= Pr(M0 ≥ k − 1)
≤ ϕ(θ) e−θ(k−1) for k > 1 and θ ∈ [0, θ∗]. (30)

Let b(K)
C be the cell loss probability in the MB(X,D)/D/1/K model. Then we have the following

theorem.

[Theorem 2]

b
(K)
C ≤ ρ−1 Pr(L0 ≥ K + 1). (31)

(Proof) See Appendix. ✷

Theorem 2 and (30) directly lead to an upper bound of b(K)
C as

b
(K)
C ≤ ρ−1 ϕ(θ) e−θ K for θ ∈ [0, θ∗]. (32)

4.2 Approximation of the cell loss probability

On the right side of inequality (32), θ∗ is easily calculated according to Proposition 1 below; however,
it is difficult to calculate ϕ(θ) because the eigenvector (vi(θ)) should be calculated. Hence we try to
approximate the cell loss probability. From [6], the asymptotic decay rate of the distribution of M0 is
−θ∗, i.e. limK→∞K−1 log Pr(M0 ≥ K) = −θ∗. From this and Theorem 2, it is proved that the asymptotic
decay rate of b(K)

C with respect to K is bounded by −θ∗, as follows:

lim
K→∞

K−1 log b(K)
C ≤ lim

K→∞
K−1 log(ρ−1 Pr(L0 ≥ K + 1))

= lim
K→∞

K−1{− log ρ+ log Pr(M0 ≥ K)} = −θ∗.

From this result we propose the following approximation:

b
(K)
C ≈ b

(1)
C e−θ∗(K−1). (33)
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b
(1)
C is the cell loss probability of the MB(X,D)/D/1/1 model, and it can be obtained by using the fluid
flow approximation as follows. Consider an M/G/∞ model, where the arrival rate is equal to λ and the
service time distribution is the same as that of X0. Let L∞(t) be the number of cells in the system at
time t. We assume that, in this M/G/∞ model, work is lost at a rate (L∞(t)− 1) when L∞(t) > 1, and
let the volume of lost work correspond to the number of lost cells in the MB(X,D)/D/1/1 model. As a
result, b(1)C is approximately given by the following formula:

b
(1)
C ≈ lim

t→∞

∫ t

0
[L∞(s)− 1]+ ds∫ t

0
L∞(s) ds

=
E[L∞(∞)− 1]+

λE[X0]
= 1− ρ−1 (1− e−ρ). (34)

The value of θ∗ can be calculated according to the following proposition.

[Proposition 1] Assuming ρ = λE[X0] < 1, the value of θ∗ is obtained as the unique positive root
of the equation

−(θ + λ) + λ ξ(eθ) = 0 , (35)

where ξ(z) ≡ E[ zX0 ]. The root can be easily calculated using usual numerical methods, such as Newton’s
method or the binary search method.
(Proof) Let us consider a discrete-time version of an MX/D/1/∞ model, where all the cells of each
packet arrive at the same time, not with regular intervals. The packet arrival process, packet sizes,
and service times are the same as the discrete-time version of the MB(X,D)/D/1/K model. For this
MX/D/1/∞ model, let a0

C(n) be the number of cells that arrive at time n, and let u
0(n), U0(n),

Λ0(n; θ), and Λ0(θ) be defined in the same manner as u(n), U(n), Λ(n; θ), and Λ(θ) in the previous
subsection, respectively. This time {a0

C(n)} are i.i.d. random variables subject to a compound Poisson
distribution.

Since the packet sizes are bounded above by gmax, we have

U0(n)− U0(gmax) ≤ U(n) ≤ U0(n+ gmax) for n ≥ gmax . (36)

Hence the following inequality holds:

log E[ eθU0(n) ] + log E[ e−θU0(gmax) ] ≤ log E[ eθU(n) ]

≤ log E[ eθU0(n) ] + log E[ eθU0(gmax) ] . (37)

Dividing each term by n and letting n tend to infinity, the relation Λ(θ) = Λ0(θ) is obtained. Therefore
Λ(θ) is given by

Λ(θ) = Λ0(θ) = −θ + λ (1− ξ(eθ)) . (38)

✷

4.3 Approximation of the packet loss probability

Consider the MB(X,D)/D/1/K model and assume that it is ergodic. Let AP (n) and AC(n), respectively,
be the number of packets that arriving during interval [0, n) and that of cells arriving during the same
interval; and let B(K)

P (n) and B(K)
C (n), respectively, be the number of packets lost during interval [0, n)

and that of cells lost during the same interval. A packet is assumed to be lost when at least one cell of the
packet is lost. Let b(K)

P and b(K)
C be the packet loss probability and the cell loss probability, respectively.

In order to represent b(K)
P in terms of b(K)

C , we introduce the mean number of lost cells in a lost packet,
κ. This is given by κ ≡ limn→∞B

(K)
C (n)/B(K)

P (n). Using κ, b(K)
P is given by

b
(K)
P = lim

n→∞
B

(K)
P (n)
AP (n)

= lim
n→∞

B
(K)
C

(n)

AC(n)
AC(n)
AP (n)

B
(K)
C

(n)

B
(K)
P

(n)

=
b
(K)
C E[X0]

κ
, (39)
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where the upper and lower bounds of κ are given by

1 ≤ κ ≤ lim
n→∞

B
(K)
C (n)

B
(K)
P (n)

≤ lim
n→∞

∑B
(K)
P

(n)

j=0 Xj

B
(K)
P (n)

= E[X0]. (40)

The value of κ depends on how the cells of a packet are consecutively lost. In [10], it was shown that
the lengths of the periods of loss are independent of the buffer size. From this and numerical experiments
in the next section, we conjecture that the value of κ is almost invariant with respect to the buffer size
K if the value of K is sufficiently large. However, it is difficult to calculate κ except for the case when
K = 1. Therefore, we use the value of κ in that case (K = 1) as an approximation of κ. Letting this
value of κ be κ̂, the following approximation of b(K)

P is obtained from (33) and (39).

b
(K)
P ≈ E[X0]

κ̂
b
(1)
C e−θ∗(K−1). (41)

κ̂ is approximately obtained as follows. Consider the MB(X,D)/D/1/1 model, and let α be the
probability that a tagged packet is not lost. Using α, κ̂ is given by

κ̂ =
ρ b

(1)
C

λ (1− α)
=
E[X0] b

(1)
C

1− α
, (42)

where b(1)C is given by formula (34). We approximate the value of α by using the probability that a
tagged packet arrives when the system is empty and no other packets arrive at the system until all the
cells of the tagged packet arrive. Since a tagged packet arriving when the system is not empty may not
be lost, this approximation underestimates the value of α. Therefore, κ̂ is also underestimated by its
approximation. Let Y0 be the random variable representing a time interval between consecutive packet
arrivals. The distribution of Y0 is exponential with mean λ−1. The approximation of α is given by

α ≈ (1− ρ(1− b
(1)
C )) Pr(X0 − 1 ≤ Y0)

= 1− ρ+ ρ b(1)C )
∞∑

j=1

e−λ(j−1) Pr(X0 = j)

= (1− ρ+ ρ b(1)C ) eλ ξ(eλ) , (43)

where we assume that Pr(X0 = 0) = 0, and b
(1)
C is given by formula (34).

5 Numerical experiments and an improvement of the approxi-

mation

This section explains the accuracy of the approximations for the cell loss probability, the packet loss
probability, and the mean number of lost cells in a lost packet κ by comparing them with simulation
results; it also presents an improvement of the approximation of the cell loss probability for a parallel
server model with the shortest-queue-type packet assignment scheme. Hereafter we use two types of packet
size distributions in common: one is a unit distribution, whose mean is equal to 35, i.e. E[X0] = 35; the
other is a uniform distribution, whose minimum and maximum values are equal to 1 and 35, and whose
mean is equal to 18, i.e. E[X0] = 18. The reason why we use the packet size of 35 as the maximum packet
size is that the maximum packet length in the Ethernet is 1518 bytes and a packet of this size is divided
into 35 cells when AAL type 3 or 4 is used.

5.1 An MB(X,D)/D/1/K model

Figures 3 and 4 show comparisons between approximation results and simulation results for the cell and
packet loss probabilities and κ in an MB(X,D)/D/1/K model. In each case, packet arrival intensity λ is
determined to make the traffic intensity ρ (= λE[X0]) be equal to a given value.

Cell loss probability
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From Figs. 3(a) and 4(a), we see that the approximation of the cell loss probability is sufficiently
accurate for all cases.

The mean number of lost cells in a lost packet: κ
From Figs. 3(b) and 4(b), we see that, for all cases, κ is underestimated by its approximation when

the value of the buffer size K is near one, and it is overestimated by its approximation when the value
of K is large; the reason for the former was explained in Subsection 4.3. From these experiments, we
propose the following conjecture about κ: the value of κ is rapidly decreasing as K is increasing, and
it converges to some value. If we obtain the value that κ converges to, it is expected to improve the
approximation.

Packet loss probability
From Figs. 3(a) and 4(a), we see that the approximation of the cell loss probability is also sufficiently

accurate for all cases. Since the approximations of the cell loss probability and κ make the approximation
of the packet loss probability, the approximation errors of the packet loss probability result from those
of the cell loss probability and κ. From these experiments, the errors of κ do not affect the accuracy of
the approximation of the packet loss probability so much.
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Figure 3: An MB(X,D)/D/1/K model (X0 = 35: constant).
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Figure 4: An MB(X,D)/D/1/K model (X0 is uniformly distributed between 1 and 35).

5.2 A parallel server model and an improvement of the approximation

Figure 5 shows comparisons between approximation results and simulation results for the cell and packet
loss probabilities in a parallel server model with the shortest-queue-type packet assignment scheme. Since
ã0 in formula (10) contains the cell loss probability b

(K)
C , we here use an iteration to obtain the approx-

imation results, as follows; Initially, set bC(K) in formula (7) to be zero and calculate an approximate
value of the cell loss probability of the parallel server model by using formula (10) and the results of
section 4; Next, set bC(K) in formula (7) to be this approximate value and calculate a new approximate
value of the cell loss probability; Continue this procedure until the difference between a new approximate
value of the cell loss probability and the previous one becomes sufficiently small. From this figure we
see that our approximations are accurate only when the buffer size K is near one. The reason for this
is considered as follows: if the number of cells in queue j is greater than one, at least two packets have
recently been assigned to the queue and at the time point when the latest packet was assigned to the
queue all the servers in the system were busy. This means that the next packet of the same class as
the latest packet is probably assigned to the same queue according to Rule (ii). In such a situation, it
is considered that the conditional expectation of α̃j(t), E [α̃j(t) |Lj(t) > 0], can be represented as the
following formula more accurately than formula (3).

E [α̃j(t) |Lj(t) > 0] ≈ λ0 +
N − S

S
λ0 Pr

(
S∏

�=1

1(L�(t) > 0) = 1

∣∣∣∣∣ Lj(t) > 0

)
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= λ0 +
(N − S)λ0ã

S−1
0 p̃0

(S − 1)! (S − ã0)
. (44)

On the right side of the first line of the equation, the first term represents that at least one class is
assigned to queue j; This means that if an arriving packet of another class is assigned to queue j, at least
one of other classes is assigned to each queue. Hence the second term on the right side of the first line
contains the factor (N − S)/S instead of N/S. Using this formula, we propose a hybrid approximation,
in which the packet arrival intensity is given by formula (10) when the value of K is small, and it is given
by formula (44) when the value of K is large. Let λ1 be the packet arrival intensity given by formula
(10) and λ2 be that given by formula (44). When λ is given by λ1, let θ∗ and b

(1)
C be denoted by θ∗1 and

b
(1)
C,1; when λ is given by λ2, let θ∗ be denoted by θ∗2 . A new approximation of the cell loss probability is
given by

b
(K)
C ≈ b

(1)
C,1(1− b

(1)
C,2/b

(1)
C,1) e

−θ∗
1(K−1) + b(1)C,2 e

−θ∗
2(K−1), (45)

where b(1)C,2 is the solution of equation

b
(1)
C,1 e

−θ∗
1(K0−1) = b

(1)
C,2 e

−θ∗
2(K0−1), (46)

and K0 ≡ log β/θ∗2 ; β is a parameter to determine the value of K at which the term of e−θ∗
2(K−1) becomes

superior to the term of e−θ∗
1(K−1).
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Figure 5: A parallel server model with Scheme B’: the first versions of the approximations for the cell
and packet loss probabilities (X0 = 35: constant).

Figures 6 and 7 show comparisons between approximation results and simulation results for the cell
and packet loss probabilities in a parallel server model with the shortest-queue-type packet assignment
scheme, where the approximation results are calculated by using formula (45). The value of β is equal to
10 for all cases. From these figures, we see that the approximations of the cell and packet loss probabilities
are rather accurate except for the cases where the packet size distribution is the uniform distribution and
the value of ρ is relatively large.

6 Conclusions

This paper derived an approximation of the packet loss probability for a parallel server model with a
dynamic packet assignment scheme, which is a variation of the shortest queue policy. Numerical examples
showed the accuracy of the approximations. This approximation is useful for dimensioning the buffer
sizes of ATM-based packet switching systems.
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Figure 6: A parallel server model: cell and packet loss probabilities (X0 = 35: constant).

A Proof of Theorem 2

In this appendix, an upper bound of the cell loss probability is obtained using the queueing model with
an infinite buffer. Approximations for cell loss probability have been obtained in other works [12], [15],
and [16].

We consider a general discrete-time queueing model denoted by DX/D/c/K : arrivals and departures
only occur at discrete time points {n : n ∈ Z+}, and it is assumed that the departures occur before
the arrivals at the same time point. c denotes the number of servers and K denotes the buffer size
including the service positions. Let an be the number of cells that arrive at time n. The arrival process,
a ≡ {an, n ∈ Z+}, is general; that is, an may depend on {aj, j ≤ n − 1}. Let L(K)

n be the number of
cells in the system at time n. The queueing process {L(K)

n , n ∈ Z+} is given by the following recursive
formulas:

L
(K)
n+1 = min{K, [L(K)

n − c]+ + an} for n ∈ Z+ and L
(K)
0 = a0. (47)

Before proving Theorem 2, the following proposition is presented:

[Proposition A1] ([18], Theorem 9) Consider two queueing models,DX/D/c/K1 andDX/D/c/K2,
which have the same arrival process a. For these models, the following formula is obtained:

K1 ≤ K2 ⇒ L(K1)
n ≤ L(K2)

n , for all n ∈ Z+. (48)

✷
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Figure 7: A parallel server model: cell and packet loss probabilities (X0 is uniformly distributed between
1 and 35).

Let B(K)
n be the number of cells lost at time n. B(K)

n where n ∈ Z+ is given by

B
(K)
0 = max{0, a0 −K}, (49)

B
(K)
n+1 = max{0, [L(K)

n − c]+ + an+1 −K}, n ∈ Z+. (50)

The cell loss probability b(K) is given by b(K) ≡ limn→∞
∑n−1

�=0 B
(K)
� /

∑n−1
�=0 a�, and the traffic intensity

ρ is given by ρ ≡ 1
c limn→∞

∑n−1
�=0 a�/n. Let (p

(∞)
j ) be the limiting distribution of the number of cells

in the system for the DX/D/c/∞ model with the same arrival process a. This is given by p(∞)
j ≡

limn→∞
∑n−1

�=0 1(L
(∞)
� = j)/n.

[Theorem 2] (Generalized version) Assuming that theDX/D/c/∞model is stable (i.e. limn→∞ L
(∞)
n <

∞ w.p.1) and
∑∞

�=0 a� =∞ w.p.1, an upper bound of b(K) is obtained as follows:

b(K) ≤ 1
ρ

∞∑
j=K+1

p
(∞)
j w.p.1. (51)

(Proof) Let Q̂n be defined by Q̂n ≡ [L(∞)
n −K]+ where n ∈ Z+ and ân by

ân ≡ max{0, an −max{0, K − [L(∞)
n−1 − c]+}}

= max{0, min{an, L
(∞)
n −K}}. (52)

To prove that {Q̂n} is the queueing process for a DX/D/c/∞ model with arrival process {ân},
Q̂0 = â0 and Q̂n+1 = [Q̂n − c]+ + ân+1, n ∈ Z+ are verified as follows:

â0 = max{0, min{a0, a0 −K}}
= max{0, a0 −K} = Q̂0,

and

[Q̂n − c]+ + ân+1

= max{0, max{0, L(∞)
n −K} − c}+ ân+1

= max{ân+1, ân+1 + L(∞)
n −K − c}

= max{ [ min{an+1, L
(∞)
n+1 −K}]+, [ min{an+1, L

(∞)
n+1 −K}]+ + L(∞)

n −K − c}
= max{0, min{an+1, L

(∞)
n+1 −K}, L(∞)

n −K − c,

min{an+1, L
(∞)
n+1 −K}+ L(∞)

n −K − c},
where

L(∞)
n < K + c ⇒ L

(∞)
n+1 −K = [L(∞)

n − c]+ −K + an+1 < an+1

⇒ [Q̂n − c]+ + ân+1 = max{0, L(∞)
n+1 −K} = Q̂n+1,
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and

L(∞)
n ≥ K + c ⇒ L

(∞)
n+1 −K = L(∞)

n − c−K + an+1 ≥ an+1

⇒ [Q̂n − c]+ + ân+1 = L(∞)
n −K − c+ an+1

= [ [L(∞)
n − c]+ + an+1 −K]+ = Q̂n+1.

For the DX/D/c/∞ model with arrival process {ân}, let d̂n be the number of cells that departed at
time n. Since d̂n+1 = min{c, Q̂n}, Q̂n = 0 ⇒ dn+1 = 0, and dn+1 ≤ c, the following inequality is
obtained:

1(Q̂n > 0) ≥ d̂n+1

c
, n ∈ Z+. (53)

Using 1(Q̂n > 0) = 1([L
(∞)
n −K]+ > 0) = 1(L(∞)

n > K), we get

n−1∑
�=0

1(L(∞)
� > K) =

n−1∑
�=0

1(Q̂� > 0)

≥
n−1∑
�=0

d̂�+1

c

=
1
c
(
n−1∑
�=0

â� − [Q̂n−1 − c]+)

=
1
c
(
n−1∑
�=0

â� − [L(∞)
n−1 −K − c]+). (54)

From this formula and Proposition A4.1, we get

c ·
n−1∑
�=0

1(L(∞)
� > K) + [L(∞)

n−1 −K − c]+ ≥
n−1∑
�=0

max{0, min{a�, [L
(∞)
�−1 − c]+ + a� −K}

≥
n−1∑
�=0

max{0, min{a�, [L
(K)
�−1 − c]+ + a� −K}

=
n−1∑
�=0

max{0, [L(K)
�−1 − c]+ + a� −K}

=
n−1∑
�=0

B
(K)
� . (55)

Using this formula and the assumptions, the proof is completed as follows:

b(K) = lim
n→∞

∑n−1
�=0 B

(K)
�∑n−1

�=0 a�

≤ lim
n→∞

∑∞
j=K+1

∑n−1
�=0 1(L

(∞)
� = j)/n

1
c

∑n−1
�=0 a�/n

+ lim
n→∞

[L(∞)
n−1 −K − c]+∑n−1

�=0 a�

=
1
ρ

∞∑
j=K+1

p
(∞)
j w.p.1. (56)

✷
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