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Abstract

We deal with a two-queue model with mixed exhaustive and gated-type K-limited services. This
model can achieve various degrees of priority in each queue by varying the value of K. Analyzing the
model by using the delay cycle technique, we obtain the Laplace-Stieltjes transforms of the waiting
time distributions for both cases with zero and non-zero walking times.
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1 Introduction

Several typical queueing models are used in developing a range of service grades. One is a non-preemptive
priority model (Jaiswal 1968), which is also called a head-of-line priority model. But, this model has two
drawbacks: First, it has no means of controling the degree of the priority in each customer class, such
as the ratio of the mean waiting times. Therefore, when the offered load of priority customers is high,
the waiting times for ordinary customers may become very long and unacceptable, while those of priority
customers are unnecessarily short. Second, the switchover time, the time for the server to change from
the services of one class to another, is not considered in this model. Hence, in modeling an actual system,
if we decide to use a non-preemptive priority model, we always have to assume the switchover time to be
zero.

In this paper we deal with a case of two customer classes, and consider an extended version of such a
non-preemptive priority model. One way to remove the drawbacks mentioned above is to represent the
original priority model as a polling model. A polling model is a system that has multiple queues accessed
in cyclic order by a single server (Boxma et al. 1987, Takagi 1986, Takagi 1988). In this model, each queue
corresponds to a customer class, and a switchover time exists for the server to move from one queue to
another. This switchover time is also called a walking time. We apply a different service discipline to
each queue in order to control the degree of the priority in each customer class. Service disciplines can
be classified by the number of customers in a queue served during one visit of the server. The following
service disciplines are typical:

(i) Exhaustive service. The server serves customers in a queue until the queue becomes empty.

(ii) Gated service. The server continuously serves only those customers in a queue who have arrived
before the server’s visit.

(iii) K-limited service (exhaustive-type). The server serves customers in a queue until either K
customers have been served or the queue becomes empty. When the parameter K is large enough,
this discipline functions nearly like an exhaustive service.

∗This is a draft version of a paper that appeared in the proceedings of Intenational Conference on the Performance and
Management of Complex Communication Networks, Tsukuba, pp. 231-250 (1997).
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(iv) K-limited service (gated-type). The server serves only K customers in a queue who have arrived
before the server’s visit. When the parameter K is large enough, this discipline functions nearly
like a gated service.

In our model, which is a single-server model with two queues, one queue is served according to
an exhaustive service and the other is served according to a gated-type K-limited service. Of course,
walking time may be non-zero. In a non-preemptive priority model with two classes, the queue of priority
customers is served according to an exhaustive service, that of ordinary customers is served according to
a 1-limited service, and walking time is assumed to be zero. Thus, our model is an extended version of
such a non-preemptive priority model, and it can control the degree of the priority by varying the value
of K. In our previous paper (Ozawa 1990), the mean waiting times of the model with zero walking times
were derived. Here we extend the previous paper by 1) deriving the Laplace-Stieltjes transforms (LSTs)
of the waiting time distributions for the same model as the previous one, in addition to the mean waiting
times, and 2) deriving the LSTs of the waiting time distributions and the mean waiting times for the new
model with non-zero walking times.

Models with two queues, like the ones considered here, have been investigated in many papers (Avi-
Itzhak et al. 1965, Boxma 1984, Cohen et al. 1981, Eisenberg 1971, Eisenberg 1979, Jaiswal 1968, Lee
1996, Ozawa 1988, Ozawa 1990, Skinner 1967, Takács 1968). However, only a few papers have dealt with
K-limited service. Lee (1996) analyzed a two-queue model with mixed exhaustive and exhaustive-type
K-limited services for a case with zero walking times, and obtained the generating function of the joint
distribution for the numbers of customers in the queues. As mentioned above, two-queue models are
also polling models. Polling models with queues served according to K-limited services were analyzed by
Everitt (1986), Everitt (1989), and Fuhrmann et al. (1988). Everitt (1986) and Everitt (1989) derived a
pseudo-conservation law, which is a formula for a certain weighted sum of the mean waiting times at each
queue, and approximated the mean waiting times by using this law. Fuhrmann et al. (1988) derived an
upper bound of a certain weighted sum of the mean waiting times at each queue, and approximated the
mean waiting times by using this bound. Polling models with mixed service disciplines were investigated
by Groenendijk (1988), Takagi (1989), and Watson (1984), but these studies did not include models with
queues served according to K-limited services.

Our model originally arose from a common channel signal transfer system (Ozawa 1990). This system
has two priority classes for signals: One is for signals that contain call control messages, and the other
is for signals that contain data. If the clocked interruption mechanism of the system can be ignored
on its performance evaluation, the signal transfer mechanism is represented as a two-queue model with
mixed exhaustive and gated-type K-limited services. However, the application of our results should not
be restricted to this system; the results are possibly used for designing other information communication
systems such as ATM switching systems (Lee 1996), routers of IP packets, and information server systems,
in which there exist various kinds of inputs (e.g. calls, packets, and tasks) and each kind of input requires
its own service grade.

The rest of the paper is constructed as follows. In section 2 we describe our two-queue model in detail.
In section 3 we analyze the model for a case with zero walking times and derive the LSTs of the waiting
time distributions. In section 4 we analyze that model for a case with non-zero walking times and derive
the LSTs of the waiting time distributions.

2 Model description

The model under consideration consists of two queues Q1 and Q2, each with infinite capacity (see Figure
1). Customers arrive at the queues according to independent Poisson processes with intensities λ1 and λ2,
and the total arrival rate is given by λ = λ1 +λ2. Customers arriving at Qi are called Class i customers.

In this model, a single server visits the queues alternately. The service discipline at Q1 is exhaustive
and that at Q2 is gated-type K-limited. The service times of Class i customers are i.i.d. stochastic
variables; their distribution Hi(t) has the first moment hi and the second moment h

(2)
i , and its LST

is denoted by H∗
i (s). The walking times from Q1 to Q2 are i.i.d. stochastic variables, and those from

Q2 to Q1 are also i.i.d. stochastic variables; and they are mutually independent. Let U1(t) denote the
walking time distribution from Q1 to Q2 and U2(t) denote that from Q2 to Q1. For each i = 1, 2, the
LST, the mean, and the second moment of Ui(t) are, respectively, U∗

i (s), ui, and u
(2)
i . We assume that

the arrival and service processes are mutually independent. The offered load at Qi, ρi, is defined as
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Figure 1: A two-queue model.
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Figure 2: A modified model.

ρi = λihi for i = 1, 2, and the total offered load, ρ, is defined as ρ = ρ1 +ρ2. We also define the following
notations:

u ≡ u1 + u2, u(2) ≡ u
(2)
1 + 2u1u2 + u

(2)
2 , ω0 ≡ λ1h

(2)
1 + λ2h

(2)
2

2
.

3 A zero walking time model

We consider a two-queue model in which the server visits the two queues alternately with zero walking
times. Whenever the server finds that one queue is empty, it moves immediately to the other, and if both
queues are empty it becomes idle until the next arrival. In this model, the number of customers in Q1

has a steady-state probability if and only if ρ1 < 1; and the number of customers in Q2 has a steady-state
probability if and only if ρ < 1. Hence, if ρ1 < 1 and ρ ≥ 1, then Q1 is in steady state and Q2 is
saturated. In this case, the waiting time distribution for Class 1 customers can be derived by analyzing
an M/G/1 vacation model; its arrival and service processes are the same as those of the original model
and each vacation time is the sum of service times of K Class 2 customers. If ρ < 1, where ρ1 is also less
than one, then the numbers of customers in Q1 and Q2 both have steady-state probabilities. Hence we
assume ρ < 1 in this section.

Considering the time points when the server departs from Q1, when it becomes idle, and when it
becomes busy, the number of customers in Q2 forms a one-dimensional piecewise Markov process (Ozawa
1990). The LSTs of the waiting time distributions are obtained by using the steady-state distribution of
the embedded Markov chain of the piecewise Markov process.

3.1 Piecewise Markov process representation

In this subsection we briefly summarize some results from Ozawa (1990) that are related to our analysis.

3.1.1 A modified model

To analyze the model, called the original model, a modified model is considered (see Figure 2). The
modified model consists of two queues, QA and QB, each with infinite capacity. Class 1 customers arrive
directly at QA. Class 2 customers arrive at QB and transfer to QA according to the following rules:

• Immediately after all customers in QA have been served, a maximum of K Class 2 customers in
QB transfer to QA.
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• When no customers exist in the system, an arriving Class 2 customer is immediately transferred to
QA.

Zero transfer time is assumed. The service disciplines at both QA and QB are first-in-first-out (FIFO).
Other aspects of the modified model are the same as those of the original model. In this modified model,
the movement of the server is replaced by the transfers of Class 2 customers.

3.1.2 Piecewise Markov process representation

Let NB(t) denote the number of customers in QB at time t, and S(t) denote the state of the server at
time t. The state space of NB(t) is a set of non-negative integers and that of S(t) is {I, B}, where “I”
means that the server is idle and “B” means that it is busy. A joint process Y (t) is defined as follows:

Y (t) ≡ (NB(t), S(t)).

The state space of Y (t) is Ω = {0I, 0B, 1, 2, ..., j, ...}, where “0I” means the state (0, I), “0B” means the
state (0, B), and “j” means the state (j,B), for j = 1, 2, ... . Let random variables t0 = 0 < t1 < t2 < ...
be the time points when the following state transitions occur:

• 0B → 0I : The system becomes empty.

• 0I → 0B: A customer arrives when the system is empty.

• j → 0B(1 ≤ j ≤ K), j → j −K(j > K): Class 2 customers transfer to QA.

An embedded Markov chain for the process {Y (t), t ≥ 0} is given by

Yn ≡ Y (tn−), n ≥ 0.

This chain {Yn, n ≥ 0} is formed by the states just prior to the time points when the state transitions
occur, not by the states just after those time points, in order to make the chain Markovian. From Ozawa
(1990), the process {Y (t), t ≥ 0} is represented as a piecewise Markov process and the points tn, n ≥ 0 are
its regeneration points. A piecewise Markov process is a discrete-state, continuous-parameter stochastic
process that is Markovian within contiguous time segments (Kuczura 1973).

Here we introduce some notations for the analysis. Let Gy(t) ≡ Pr(tn − tn−1 ≤ t |Yn−1 = y), y ∈ Ω
be a conditional distribution of a regeneration interval. Note that the subscript y of Gy(t) denotes the
state just prior to the current state. Gy(t) is given by

G∗
0B(s) =

λ

λ + s
, (1)

G∗
0I(s) =

λ1

λ
G∗(s) +

λ2

λ
H∗

2 (s + λ1 − λ1G
∗(s)), (2)

G∗
j (s) =

{ {H∗
2 (s + λ1 − λ1G

∗(s))}j , K > j ≥ 1,
{H∗

2 (s + λ1 − λ1G
∗(s))}K , j ≥ K,

(3)

where G∗(s) is the LST of the busy period distribution for Class 1 customers, and it is given by the
solution of the following functional equation:

G∗(s) = H∗
1 (s + λ1 − λ1G

∗(s)). (4)

3.1.3 Embedded Markov chain {Yn, n ≥ 0}
Let (πy, y ∈ Ω) denote the steady-state distribution for the process {Yn, n ≥ 0} and Π(z) denote its
generating function, i.e., Π(z) ≡ ∑∞

j=0 πjz
j, where π0 = π0I + π0B. From Ozawa (1990), Π(z) is given

by

Π(z) =

1
2
{1 − Θ0(z)}zKπ0 +

K−1∑
j=0

{zKΘj(z) − zjΘK(z)}πj

zK − ΘK(z)
, (5)
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where

Θ0(z) = G∗
0I(λ2 − λ2z) =

λ1

λ
G∗(λ2 − λ2z) +

λ2

λ
Θ1(z), (6)

Θi(z) = G∗
i (λ2 − λ2z)

= {H∗
2 ((λ2 − λ2z) + λ1 − λ1G

∗(λ2 − λ2z))}i
, i = 1, 2, ...,K. (7)

There are K unknown parameters {πj , j = 0, 1, 2, ...,K − 1} in formula (5). They can be obtained
from the roots of the equation

zK − ΘK(z) = 0, |z| < 1, (8)

and the following equation, which is derived from the normalizing condition for Π(z):

K −
K−1∑
j=0

(K − j)πj =
λ2ρπ0

2λ(1 − ρ)
. (9)

From Lemmas 1 and 2 in Section 4 of Takács (1962), if ρ < 1, then Equation (8) has exactly K − 1
distinct roots in the region |z| < 1.

Consider a regeneration interval, (tn−1, tn]. Let Ncycle denote the number of Class 2 customers served
during the interval in the case where Yn−1 �= 0I , and be equal to zero in the case where Yn−1 = 0I . Let
ξ
(i)
K denote the ith factorial moment for Ncycle, and let ξK ≡ ξ

(1)
K . ξK and ξ

(2)
K are given by

ξK =
∞∑

j=0

min(j, K)πj = K −
K−1∑
j=0

(K − j)πj , (10)

ξ
(2)
K =

∞∑
j=0

min(j, K){min(j, K) − 1}πj

= K(K − 1) −
K−1∑
j=0

{K(K − 1) − j(j − 1)}πj . (11)

From (9) and (10), we obtain ξK = λ2ρπ0/{2λ(1 − ρ)}.

3.2 Waiting time distributions and mean waiting times

3.2.1 Waiting time distribution of Class 1 customers

Let L1(z) denote the generating function of the distribution of the number of Class 1 customers in the
system just after their departures, and let W ∗

1 (s) denote the LST of the waiting time distribution of Class
1 customers. In terms of L1(z), W ∗

1 (s) is represented as W ∗
1 (s) = L1(1 − s/λ1)/H∗

1 (s). Therefore, we
derive L1(z) by using the results of the previous subsection.

Assume a steady-state process, and consider an interval (tn, tn+1] between successive regeneration
points. We introduce the following notations.

• J
(2)
n : The number of Class 2 customers transferred at tn; J (2)

n = min(Yn, K).

• J
(1)
n : The number of Class 1 customers departed during interval (tn, tn+1].

• t
(2)

n,J
(2)
n

: Time point when the server completes all services for J (2)
n Class 2 customers transferred at

tn.

• t
(1)
n,j, j = 1, ..., J (1)

n : The jth departure time of Class 1 customers during interval (tn, tn+1], where

t
(1)

n,J
(1)
n

= tn+1, and t
(1)
n,0 ≡ t

(2)

n,J
(2)
n

.

• v
(1)
n,j , j = 1, ..., J (1)

n : The number of Class 1 customers who arrived during interval (t(1)n,j−1, t
(1)
n,j ].

• X
(1)
n,j, j = 0, 1, ..., J (1)

n : The number of Class 1 customers in the system just after time t
(1)
n,j .
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L1(z) is represented as

1
C
L1(z)

=
∞∑

m=0

zm


K−1∑

j=1

πj

∞∑
k=1

Pr(X (1)
n,0 = k | J (2)

n = j)

·
∞∑

i=1

Pr(X (1)
n,i = m | X(1)

n,0 = k)

+
∞∑

j=K

πj

∞∑
k=1

Pr(X (1)
n,0 = k | J (2)

n = K) ·
∞∑

i=1

Pr(X (1)
n,i = m | X(1)

n,0 = k)

+
λ1π0I

λ

∞∑
i=1

Pr(X (1)
n,i = m | X(1)

n,0 = 1)

+
λ2π0I

λ

∞∑
k=1

Pr(X (1)
n,0 = k | Yn = 1) ·

∞∑
i=1

Pr(X (1)
n,i = m | X(1)

n,0 = k)

]
,

(12)

where C is the normalizing constant. In the brackets on the right-hand side of the equation: the first term
represents the probability that the number of Class 1 customers in the system just after their departure
is m in the case where 1 ≤ Yn ≤ K − 1 and J

(2)
n = Yn; the second term represents that probability in the

case where Yn ≥ K and J
(2)
n = K; the third term represents that probability in the case where Yn = 0I

and a Class 1 customer arrived at tn; and the fourth term represents that probability in the case where
Yn = 0I and a Class 2 customer arrived at tn.

Let the distribution function of v(1)
n,j be v1(i) ≡ Pr(v(1)

n,j = i). X(1)
n,j satisfies X(1)

n,j = X
(1)
n,j−1−1+v

(1)
n,j, j =

1, 2, ..., J (1)
n , therefore {X(1)

n,j, 0 ≤ j ≤ J
(1)
n } is a Markov chain having an absorbing state 0; J (1)

n is the

number of steps until the Markov chain reaches the absorbing state, hence X(1)

n,J
(1)
n

= 0. From these points

the following recursive expression for Pr(X (1)
n,j = m | X(1)

n,0 = k) is obtained.

Pr(X (1)
n,j = m | X(1)

n,0 = k)

=




0 for j ≤ k and m < k − j,∑m+1
r=k−j+1 v1(m− r + 1) Pr(X (1)

n,j−1 = r | X(1)
n,0 = k)

for j ≤ k and m ≥ k − j,∑m+1
r=1 v1(m− r + 1) Pr(X (1)

n,j−1 = r | X(1)
n,0 = k)

for j > k.

(13)

Using Equation (13), the following expression of L1(z) is obtained:

1
C
L1(z)

=
H∗

1 (λ1 − λ1z)
z −H∗

1 (λ1 − λ1z)


K−1∑

j=0

{
(H∗

2 (λ1 − λ1z))j − (H∗
2 (λ1 − λ1z))K

}
πj

+(H∗
2 (λ1 − λ1z))K +

λ1π0I

λ
z +

λ2π0I

λ
H∗

2 (λ1 − λ1z) − (1 + π0I)
]
. (14)

The value of the normalizing constant C is obtained from the normalizing condition for L1(z) as follows:

C =
λ(1 − ρ)
λ1π0I

. (15)

From Equations (14) and (15), W ∗
1 (s) is given by

W ∗
1 (s) =

λ(1 − ρ)/π0I

s− λ1 + λ1H∗
1 (s)

[
1 + π0I − (H∗

2 (s))K

6



−
K−1∑
j=0

{(H∗
2 (s))j − (H∗

2 (s))K}πj − (π0I/λ){λ1 − s + λ2H
∗
2 (s)}] .

(16)

3.2.2 Waiting time distribution of Class 2 customers

Let L2(z) denote the generating function of the distribution of the number of Class 2 customers in the
system immediately after their departure. The LST, W ∗

2 (s), of the waiting time distribution of Class 2
customers is also obtained by using L2(z) as W ∗

2 (s) = L2(1 − s/λ2)/H∗
2 (s).

Assume a steady-state process, and consider an interval (tn, tn+1] between successive regeneration
points. We introduce the following notations.

• J
(2)
n : The number of Class 2 customers transferred at tn; J (2)

n = min(Yn, K).

• t
(2)
n,j, j = 1, ..., J (2)

n : The jth departure time of Class 2 customers during interval (tn, tn+1], and

t
(2)
n,0 ≡ tn.

• v
(2)
n,j , j = 1, ..., J (2)

n : The number of Class 2 customers who arrived during interval (t(2)n,j−1, t
(2)
n,j ].

• X
(2)
n,j, j = 0, 1, ..., J (2)

n : The number of Class 2 customers in the system just after time t
(2)
n,j, where

X
(2)
n,0 = Yn.

Let the distribution of v(2)
n,j be v2(i) ≡ Pr(v(2)

n,j = i). Using these notations, L2(z) is represented as

1
C
L2(z) =

∞∑
m=0

zm


λ2π0I

λ
v2(m) +

K−1∑
k=1

πk

k∑
j=1

Pr(X (2)
n,j = m | X(2)

n,0 = k)

+
∞∑

k=K

πk

K∑
j=1

Pr(X (2)
n,j = m | X(2)

n,0 = k)


 , (17)

where C is a normalizing constant. In the brackets on the right hand side of Equation (17): the first term
represents the probability that the number of Class 2 customers in the system just after their departure
is m in the case where Yn = 0I and a Class 2 customer arrived at tn; the second term represents that
probability in the case where 1 ≤ Yn ≤ K − 1; the third term represents that probability in the case
where Yn ≥ K. Using the same procedures as those used for deriving W ∗

1 (s), W ∗
2 (s) is given by

W ∗
2 (s) = (1 − ρ) +

λ(1 − ρ)/π0I

(1 − s/λ2)K{s− λ2 + λ2H∗
2 (s)}

· [{(H∗
2 (s))K − (1 − s/λ2)K}Π(1 − s/λ2)

−
K−1∑
k=0

{(1 − s/λ2)k(H∗
2 (s))K − (1 − s/λ2)K(H∗

2 (s))k}πk

]
. (18)

3.2.3 Mean waiting times

The mean waiting time w1 is obtained by differentiating Equations (16) and (18) with respect to s and
putting s → 0+, as follows:

w1 =
w0

1 − ρ1
− λρ2(1 − ρ)h2

λ2(1 − ρ1)π0
ξ
(2)
K , (19)

w2 =
w0

(1 − ρ1)(1 − ρ)
+

λρ1(1 − ρ)h2

λ2(1 − ρ1)π0
ξ
(2)
K , (20)

where ξ
(2)
K is given by (11). These results are coincident with the results of Ozawa (1990).
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Figure 3: Behavior of the server during (tn, tn+1].

4 A non-zero walking time model

In this section, the LSTs of the waiting time distributions and the mean waiting times are derived for
the two-queue model with non-zero walking times. In this model the number of customers in Q1 has a
steady-state probability if and only if ρ1 < 1; and that of customers in Q2 has a steady-state probability
if and only if ρ + λ2u

K < 1. Hence, if ρ1 < 1 and ρ + λ2u
K ≥ 1, the LST of the waiting time distribution

of Class 1 customers and the mean waiting time can be derived by analyzing an M/G/1 vacation model.
In this section we assume that ρ < 1 − λ2u

K so that the numbers of customers in both the queues have
steady-state probabilities.

An outline of the analysis is as follows. Considering the time points when the server departs from
Q1, the number of Class 2 customers in Q2 forms a one-dimensional semi-Markov process. Using the
steady-state distribution of the embedded Markov chain of this semi-Markov process, we can obtain the
generating function of the distribution of the number of customers in each queue just before the time
points when the server visits this queue. The LSTs of the waiting time distributions can be represented
in terms of these generating functions.

4.1 Embedded Markov chain

Let {tn} be time points when the server departs from Q1 and Zn be the number of customers in Q2 just
after tn. Since Q1 is served according to an exhaustive service, the number of customers in Q1 just after
tn is always zero. Therefore, assuming the Poisson arrival processes and i.i.d. service time processes, the
joint distribution of time length (tn+1 − tn) and Zn+1 only depends on Zn; letting Z(t) be defined as
Z(t) ≡ ∑∞

n=0 Zn1(t ∈ [tn, tn+1) ), where 1(·) is an indicator function, {Z(t)} is a semi-Markov process,
and {Zn} is its embedded Markov chain. Here, we consider only {Zn}, and introduce the following
notations (see Figure 3):

• t
(i)
n : The time point when the server arrived at Qi after tn, i = 1, 2.

• N
(i)
n : The number of customers in Qi just before t

(i)
n , i = 1, 2.

• v
(i)
n,1: The number of Class i customers arriving during (tn, t

(2)
n ], i = 1, 2.

• t′n: The time point when the server departed from Q2 after tn.

• v
(1)
n,2: The number of Class 1 customers arriving during (t(2)n , t′n].

• v
(1)
n,3: The number of Class 1 customers arriving during (t′n, t

(1)
n ].

• v
(2)
n,2: The number of Class 2 customers arriving during (t(2)n , tn+1].

• τn,1 = t
(2)
n − tn: Server’s walking time from Q1 to Q2.

• τn,2 = t′n − t
(2)
n : Server’s sojourn time at Q2.
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• τn,3 = t
(1)
n − t′n: Server’s walking time from Q2 to Q1.

• τn,4 = tn+1 − t
(1)
n : Server’s sojourn time at Q1.

Let the transition probability matrix of the embedded Markov chain {Zn, n ≥ 0} be denoted by
P = (pi,j), where pi,j ≡ Pr(Zn = j |Zn−1 = i). {Zn, n ≥ 0} satisfies the recursive formula Zn+1 =
[Zn + v

(2)
n,1 −K]+ + v

(2)
n,2, and (pij) satisfies the relation pK+i,j = pK,j−i. Hence P is given by

P =

0
1
·
K

K + 1
·




p0,0 p0,1 p0,2 ·
p1,0 p1,1 p1,2 ·
· · · ·

pK,0 pK,1 pK,2 ·
0 pK,0 pK,1 ·
· · · ·



. (21)

(τn,2+τn,3+τn,4) is a delay cycle (Kleinrock 1976) for Class 1 customers: its initial delay is (τn,2+τn,3),
where τn,2 is the sum of service times of min(Zn + v

(2)
n,1, K) Class 2 customers and τn,3 is a walking time

of the server. Therefore, for i ≤ K, the generating function of (pi,j) with respect to j, denoted by Θi(z),
is given by

Θi(z)

≡
∞∑

j=0

zjpi,j

= U∗
1 (g(z))U∗

2 (g(z))(H∗
2 (g(z)))Kz−K+i + U∗

2 (g(z))

·
K−i−1∑

�=0

{
(H∗

2 (g(z)))i+� − z−K+i+�(H∗
2 (g(z)))K

}
ϕ�(G∗(λ2 − λ2z)), (22)

where

g(z) ≡ λ2 − λ2z + λ1 − λ1G
∗(λ2 − λ2z), (23)

ϕ�(z) ≡
∞∑

k=0

zk Pr(v(1)
n,1 = k, v

(2)
n,1 = .) =

(−λ2)�

.!
U

∗(�)
1 (λ1 − λ1z + λ2), (24)

and G∗(s) is the LST of the busy period distribution for Class 1 customers, given by Equation (4).
Let (πi) denote the steady-state distribution for the process {Zn, n ≥ 0}, π ≡ (π0 π1 π2 ... ) denote

its row vector, and Π(z) denote its generating function. From the equilibrium equation πP = π, Π(z) is
given by

Π(z) ≡
∞∑

i=0

ziπi =

∑K−1
j=0

{
zKΘj(z) − zjΘK(z)

}
πj

zK − ΘK(z)
, (25)

where Θi(z) is given by Equation (22). K unknown parameters {πj, j = 0, 1, ...,K− 1} in Equation (25)
can be obtained from the roots of the equation

zK − U∗
1 (g(z))U∗

2 (g(z))(H∗
2 (g(z)))K = 0, |z| < 1, (26)

and the following equation derived from the normalizing condition for Π(z):

K −
K−1∑
j=0

K−j−1∑
�=0

(K − j − .)ϕ�(1)πj =
λ2u

1 − ρ
. (27)

From Lemmas 1 and 2 in Section 4 of Takács (1962), if ρ + λ2u
K < 1, then Equation (26) has exactly

(K − 1) distinct roots in the region |z| < 1. The procedure descrived in the appendix of Ozawa (1990)
can be applied to this case for calculating the values of the unknown parameters.
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4.2 Distributions of N (1)
n and N (2)

n

Let Fi(z) denote the generating function of the distribution of the number of customers in Qi just before
the time points when the server visits the queue. In the following analysis, a steady-state process is
assumed.

Since v
(1)
n,3 is the number of Class 1 customers arriving during a walking time of the server from Q2

to Q1, it is independent from v
(1)
n,1, v(1)

n,2, and Zn . Therefore, from the equation N
(1)
n = v

(1)
n,1 + v

(1)
n,2 + v

(1)
n,3,

F1(z) is given by

F1(z) ≡
∞∑

i=0

zi Pr(N (1)
n = i)

= U∗
1 (λ1 − λ1z)U∗

2 (λ1 − λ1z)(H∗
2 (λ1 − λ1z))K

+
K−1∑
k=0

k∑
�=0

{(H∗
2 (λ1 − λ1z))k − (H∗

2 (λ1 − λ1z))K}ϕ�(z)πk−�. (28)

Since N
(2)
n is equal to (Zn + v

(2)
n,1) and v

(2)
n,1 is independent of Zn, F2(z) is given by the following

formula.

F2(z) ≡
∞∑

i=0

zi Pr(N (2)
n = i) = U∗

1 (λ2 − λ2z)Π(z), (29)

For use in the next subsection, we introduce some notations: let Ncycle denote the number of Class 2
customers served during a cycle, which is a time period between consecutive visits of the server to Q1.
Let ξ(i)

K denote the ith factorial moment for Ncycle, and let ξK ≡ ξ
(1)
K . Since Pr(N (2)

n = j) is given by

Pr(N (2)
n = j) =

j∑
�=0

Pr(Zn = j − ., v
(2)
n,1 = .) =

j∑
�=0

ϕ�(1)πj−�, (30)

ξK and ξ
(2)
K is obtained as follows:

ξK =
∞∑

j=0

min(j, K) Pr(N (2)
n = j) = K −

K−1∑
j=0

j∑
�=0

(K − j)ϕ�(1)πj−�, (31)

ξ
(2)
K =

∞∑
j=0

min(j, K){min(j, K) − 1}Pr(N (2)
n = j)

= K(K − 1) −
K−1∑
j=0

j∑
�=0

{K(K − 1) − j(j − 1)}ϕ�(1)πj−�. (32)

From Equations (27) and (31), we obtain ξK = λ2u/(1 − ρ).
Since the maximum number of Class 2 customers served during one cycle is K, ξK must be less than

K if Q2 is not saturated. From this, we obtain the condition λ2u
1−ρ < K, in which the number of customers

in Q2 has a steady-state probability.

4.3 Waiting time distributions and mean waiting times

4.3.1 Relation between the waiting time distribution and the distribution of the number
of customers in a queue

Consider a polling model with Poisson arrival processes and i.i.d. service time processes. Let X(i)
0 denote

the number of customers in queue i just before a time point when the server visited this queue. The
LST, W ∗

i (s), of the waiting time distribution of Class i customers is represented in terms of Fi(z), which
is the generating function of the distribution of X(i)

0 , as follows:
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• If queue i is served according to an exhaustive service,

W ∗
i (s) =

1 − ρi

F ′
i (1)

· 1 − Fi(1 − s/λi)
H∗

i (s) − 1 + s/λi
. (33)

• If queue i is served according to a gated-type K-limited service,

W ∗
i (s) =

λ2CKL

(1 − s/λi)K{s− λi + λiH∗
i (s)}

· [{(H∗
i (s))K − (1 − s/λi)K}Fi(1 − s/λi)

−
K−1∑
k=0

{(1 − s/λi)k(H∗
i (s))K − (1 − s/λi)K(H∗

i (s))k}xi(k)
]
.

(34)

In these formulas, λi and H∗
i (s) are the arrival intensity and the LST of the service time distribution of

Class i customers; CKL ≡ {K − ∑K−1
k=0 (K − k)xi(k)}−1 and xi(k) ≡ Pr(X (i)

0 = k). Note that, under
the condition where Fi(z) is given, W ∗

i (s) depends only on the service discipline of queue i. Equation
(33) is given by Watson (1984). Equation (34) is derived as follows. Consider a cycle, and let X

(i)
j be

the number of customers in queue i just after the time when the jth customer departed from this queue
during the cycle. The generating function, Li(z), of the distribution of the number of customers in queue
i just after their departures is given by

1
C
Li(z) =

∞∑
m=0

zm
∞∑

k=1

min(k,K)∑
j=1

Pr(X (i)
j = m |X(i)

0 = k) Pr(X (i)
0 = k), (35)

where C is the normalizing constant. Pr(X (i)
j = m |X(i)

0 = k) satisfies the following recursive formula:

Pr(X (i)
j = m |X(i)

0 = k)

=

{
0, m < k − j,∑m+1

r=k−j+1 v(m− r + 1) Pr(X (i)
j−1 = r |X(i)

0 = k), m ≥ k − j,
(36)

where v(.) ≡ λ�
i

�! e
−λi . Hence Li(z) is given by

1
C
Li(z) =

H∗
i (λi − λiz)

zK{z −H∗
i (λi − λiz)}

[{zK − (H∗
i (λi − λiz))K}Fi(z)

−
K∑

k=0

{zK(H∗
i (λi − λiz))k − zk(H∗

i (λi − λiz))K}xi(k)
]
. (37)

From the normalizing condition for Li(z), C is given by

C = {K −
K−1∑
k=0

(K − k)xi(k)}−1 = CKL. (38)

Substituting (37) into W ∗
i (s) = Li(1 − s/λi)/H∗

i (s), formula (34) is obtained.

4.3.2 LSTs of the waiting time distributions

Since the two-queue model is a polling model, the results of the previous subsection can be used to derive
the LSTs of the waiting time distributions. In our model CKL in Equation (34) is equal to ξ−1

K = ( λ2u
1−ρ)−1,

therefore we get the following formulas from Equations (28), (29), (33), and (34):

W ∗
1 (s) =

(1 − ρ)/u
s− λ1 + λ1H∗

1 (s)
[
1 − U∗

1 (s)U∗
2 (s)(H∗

2 (s))K

11



−
K−1∑
k=0

k∑
�=0

{(H∗
2 (s))k − (H∗

2 (s))K}ϕ�(1 − s/λ1)πk−�

]
, (39)

W ∗
2 (s) =

(1 − ρ)/u
(1 − s/λ2)K{s− λ2 + λ2H∗

2 (s)}
·
[{

(H∗
2 (s))K − (1 − s

λ2
)K

}
U∗

1 (s)Π(1 − s

λ2
)

−
K−1∑
k=0

k∑
�=0

{
(1 − s

λ2
)k(H∗

2 (s))K

−(1 − s

λ2
)K(H∗

2 (s))k

}
ϕ�(1)πk−�

]
. (40)

4.3.3 Mean waiting times

The mean waiting times are obtained by differentiating Equations (39) and (40) with respect to s and
putting s → 0, as follows:

w1 =
w0

1 − ρ1
+

ρ2u2

1 − ρ1
+

Kh2(1 − ρ)u1

(1 − ρ1)u
+

(1 − ρ)u(2)

2(1 − ρ1)u

+
(1 − ρ)h(2)

2

2(1 − ρ1)u
ξ
(2)
K − (1 − ρ)h2

λ2(1 − ρ1)u
ζ
(2)
K , (41)

w2 =
w0

(1 − ρ1)αK
+

ρ2u

(1 − ρ1)αK
− K(1 − ρ)ρ1u1

λ2(1 − ρ1)u
+

(1 − ρ)u(2)

2(1 − ρ1)αKu

−1 − ρ

2λ2
2u

{
(1 − ρ)(1 − ρ1 + ρ2)

(1 − ρ1)αK
− (1 + ρ2)

}
ξ
(2)
K

+
(1 − ρ)2ρ1

λ2
2(1 − ρ1)αKu

ζ
(2)
K , (42)

where ξ
(2)
K is given by Equation (32), and αK and ζ

(2)
K are given by

αK ≡ (1 − ρ) − λ2u

K
, (43)

ζ
(2)
K ≡

K−1∑
k=0

k∑
�=0

(K − k)(. + 1)ϕ�+1(1)πk−�. (44)

w1 and w2 satisfy the following pseudo-conservation law (Everitt 1986, Everitt 1989):

ρ1w1 + ρ2(1 − λ2u

(1 − ρ)K
)w2

=
ρw0

1 − ρ
+

ρu(2)

2u
+

ρ2ρu

1 − ρ
− ρ2(1 + ρ2)

2
· ξ

(2)
K

λ2K
. (45)

5 Numerical examples

Using numerical examples, we show how the mean waiting times vary with parameter K for a case of
non-zero walking times. Here it is assumed that both H1(t) and H2(t) are exponential distributions,
whose mean values are one (i.e. h1 = h2 = 1), and that both U1(t) and U2(t) are unit distributions,
whose mean values are 0.1 (i.e. u1 = u2 = 0.1). We further assume that λ1 = λ2. The mean waiting
times of Class 1 customers, w1, and those of Class 2 customers, w2, are plotted in Figure 4. For each
value of ρ, w1 increases and w2 decreases monotonically as K increases.
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Figure 4: Mean waiting times for a case of non-zero walking times.

6 Conclusions

A single-server model was analyzed using a delay cycle technique, and the LSTs of the waiting time
distributions and the mean waiting times were obtained. The model had two queues: one is served
according to an exhaustive service, and the other served according to a gated-type K-limited service.
The results for a model with mixed exhaustive and 1-limited services were given as a special case where
K = 1. The results for a model with mixed exhaustive and gated services were given as a special case
where K = ∞ (Ozawa 1988).

These results are useful for evaluating integrated services systems that handle various kinds of inputs.
They can also be used to verify the accuracy of approximation formulas of polling models with mixed
service disciplines.
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