Marginal Waiting Cost in Optimization Based Flow Control

Toshihisa Ozawa Department of Business Administration Komazawa University, Japan toshi@komazawa-u.ac.jp

Flow control (congestion control)

Example:

TCP flow control & random early detection (RED)

- *p*: Marking in an ACK packet
- *x_i* corresponds to congestion window size.

ABR flow control

p: Congestion indication (CI) and/or explicit rate (ER) in an RM cell r corresponde to ellowed cell rate (ACR)

x_i corresponds to allowed cell rate (ACR)

Flow control as an optimization problem

To construct a flow control mechanism

- --> To determine the following according to a policy
 - How to generate p
 - How to control x_i according to p

- Policy

- --> To minimize the total cost, which is congestion cost minus user utilities
- Mechanism to generate p and to control x_i
 - --> Solution for the optimization problem corresponding to the policy

Related works

F. P. Kelly et al., Rate control for communication networks: shadow price, proportional fairness and stability, Journal of the Operational Research Society, 49 (1998).

- S. J. Golestani et al., A class of end-to-end congestion control algorithms, Sixth International Conference on Network Protocols (1998).

- S. H. Low et al., Optimization flow control, I: basic algorithm and convergence, IEEE/ACM Transactions on Networking (1999).

Kelly et al. (1998)

- Policy (single bottleneck case)

 $\max_{\mathbf{x}} J(\mathbf{x}) = \sum_{i} U_{i}(x_{i}) - R(\sum_{i} x_{i})$

 $U_i(\cdot)$: Utility function of user *i*, strictly increasing, concave, differentiable $R(\cdot)$: Congestion cost of the bottleneck link, differentiable p(y) = d/dy R(y): shadow price, positive, strictly increasing

- Mechanism to control x_i (willingness to pay type control)

$$d/dx \ x_i(t) = \kappa_i \left(w_i(t) - x_i(t) p\left(\sum_j x_j(t)\right) \right)$$

 $w_i(t) = x_i(t)U'(x_i(t))$

κi: control parameter

- To consider accumulated cost, for example,

Minimize $\int \left(\sum_{i} U_{i}(x_{i}(t)) - R\left(\sum_{i} x_{i}(t) \right) \right) dt$

- To consider stochastic models, which are queueing models

Single bottleneck model: single node and multiple users

- Poisson arrival processes:
 - intensity vector $\lambda(t) = (\lambda_i(t))$ <-- control subject
- Exponential distributed services: service rate μ (the same for all the users)
- *K*: Buffer size, including service facility
- L(t): the number of packets in the system at time t
- $A_i(t)$: the number of user *i*'s packets arriving in [0, t]

User utility and congestion cost

User utility is represented as a function of throughput.

 $U_i(1(L(t) < K) \lambda_i(t))$: **Instantaneous utility** of user *i* at time *t*

 $U_i(\cdot)$: a function, non-negative, increasing, differentiable, strictly concave

$$\mathbf{E}\left[\frac{1}{t}\int_{0}^{t}\mathbf{1}(L(t-) < K)dA_{i}(t)\right] = \mathbf{E}\left[\frac{1}{t}\int_{0}^{t}\mathbf{1}(L(t) < K)\lambda_{i}(t)dt\right]$$

 $1(\cdot)$: indicator function

--> From this formula, $1(L(t) < K) \lambda_i(t)$ can be considered as **the instantaneous throughput** of user *i*

Congestion cost approximately represents delay and loss.

 $R(L(t)) \lambda_i(t)$: Instantaneous congestion cost for user *i* a time *t*

 $R(\cdot)$: a function, non-negative, increasing (the same for all the users)

Note: $R(K) \lambda_i(t)$ represents the instantaneous cost of loss.

Formulation 1: Expected discounted cost

To minimize the expectation of the discounted total user cost

 $\mathbf{u}(t) = (ui(t))$: Control parameters, i.e., $\lambda i(t) < -- ui(t)$ Bi = [bi,0, bi,1]: Range of ui(t), $\mathbf{B} = B_1 \times ... \times B_k$ $U_{i,\max} = Ui(bi,1) b_{i,1}$

 $\alpha > 0$: Exponential discount factor

Instantaneous cost for user *i*

$$\begin{split} C_i(L(t),\lambda_i(t)) &\equiv \left\{ U_{i,\max} - U_i \Big(\mathbb{1}(L(t) < K)\lambda_i(t) \Big) \right\} + R(L(t))\lambda_i(t) \\ C(L(t),\lambda(t)) &\equiv \sum_{i=1}^k C_i(L(t),\lambda_i(t)) \end{split}$$

- Objective function $J_{\alpha}(\mathbf{u}, l_{0}) \equiv \lim_{T \to \infty} \mathbb{E}_{\mathbf{u}} \left[\int_{0}^{T} e^{-\alpha t} C(L(t), \mathbf{u}(t)) dt \mid L(0) = l_{0} \right]$

Policy (criterion) Minimize $J_{\alpha}(\mathbf{u}, l_0)$

Result 1: Expected discounted cost

Problem 1: P1 $J_{\alpha}^{*}(l_{0}) \equiv \inf_{\mathbf{u}} J_{\alpha}(\mathbf{u}, l_{0})$

Result

Assume that there exist the function $V\alpha(\cdot)$ that satisfies

(1)
$$V_{\alpha}(l) \equiv \inf_{\mathbf{u}} J_{\alpha}(\mathbf{u}, l),$$

and the function $v * \alpha(\cdot)$ that satisfies

(2)
$$\mathbf{v}_{\alpha}^{*}(l) = \underset{\mathbf{v}\in\mathbf{B}}{\operatorname{argmin}} \left\{ \sum_{i=1}^{k} v_{i} 1(l < K) \left[V_{\alpha}(l+1) - V_{\alpha}(l) \right] + C(l,\mathbf{v}) \right\}.$$

Then, the optimal control $\mathbf{u}^{*\alpha}$ is given by

(3)
$$\mathbf{u}_{\alpha}^{*}(t) = \mathbf{v}_{\alpha}^{*}(L(t)).$$

This result is directly derived from Theorem VTT-T1 in Point Processes and Queues by Bremaud.

Formulation 2: Expected average cost

To minimize the expectation of the average total user cost

Result 2: Expected average cost

Problem 2: P2
$$J^*(l_0) \equiv \inf_u J(u, l_0)$$

Result

Assume that there exist the function $V\alpha(\cdot)$ that satisfies

(1)
$$V_{\alpha}(l) = \inf_{u} J_{\alpha}(\mathbf{u}, l),$$

and the function $G(\cdot)$ that is a certain limit of $V\alpha(.)$, i.e,

(4)
$$G(l) = \lim_{n \to \infty} \left(V_{\alpha_n}(l+1) - V_{\alpha_n}(l) \right)$$
, where $\alpha_n \to 0$ as $n \to \infty$.

Furthermore, assume that there exists the function $v^*(\cdot)$ that satisfies

(5)
$$\mathbf{v}^*(l) = \underset{\mathbf{v} \in \mathbf{B}}{\operatorname{argmin}} \left\{ \sum_{i=1}^k v_i \mathbf{1}(l < K) G(l) + C(l, \mathbf{v}) \right\}.$$

Then, the optimal control **u*** is given by

(6)
$$\mathbf{u}^*(t) = \mathbf{v}^*(L(t))$$

Discussion

Functions $V_{\alpha}(\cdot)$ and $G(\cdot)$ $V_{\alpha}(\cdot)$ is the expected total cost for the future. $V_{\alpha}(l) \equiv \inf_{\mathbf{u}} J_{\alpha}(\mathbf{u}, l)$ $G(\cdot)$ can be considered as the expected cost of one packet for the future. $G(l) \equiv \lim_{n \to \infty} \left(V_{\alpha_n}(l+1) - V_{\alpha_n}(l) \right)$

Flow control (the case of expected average cost)

From equation (5), $v^*(\cdot)$ satisfies

7)
$$U'_i(v^*_i(l)) \equiv G(l) + R(l), \ l < K.$$

Therefore, signal $p(\cdot)$ can be define as

 $p(l) \equiv G(l) + R(l),$

and the packet arrival intensities are given as the solution of

P3)
$$\inf_{v_i} \{ v_i p(L(t)) - U_i(v_i) \}.$$

Note: $p(\cdot)$ corresponds to a shadow price and (P3) to Kelly's willingness to pay type control.

Further study

- How to generate signals using only data obtained by the network
- Analysis of a model that includes delay of signal