Primitive spatial graphs and graph minors

Makoto Ozawa
(Komazawa University)

Yukihiro Tsutsumi
(Sophia University)

July 22, 2004

Definition

$G:$ graph
$\phi: G \rightarrow S^{3}:$ embedding
ϕ is free
$\Longleftrightarrow \pi_{1}\left(S^{3}-\phi(G)\right)$ is a free group
ϕ is flat
$\Longleftrightarrow \forall$ cycle $C \subset G, \exists$ disk $D \subset S^{3}$,
s.t. $D \cap \phi(G)=\partial D=\phi(C)$
ϕ is primitive
$\Longleftrightarrow \forall$ component G_{i} of G,
\forall spanning tree T_{i} of G_{i},
the bouquet $\phi\left(G_{i}\right) / \phi\left(T_{i}\right)$ is trivial

Fundamental Theorem and Conjecture

- Theorem (Robertson-Seymour-Thomas)
ϕ is flat \Longleftrightarrow
$\forall H \subset G,\left.\phi\right|_{H}$ is free

Theorem 1
ϕ is primitive \Longleftrightarrow
\forall connected $H \subset G,\left.\phi\right|_{H}$ is free

- Theorem (Robertson-Seymour-Thomas)
G is flat $\Longleftrightarrow G$ is linkless

Conjecture 1
G is primitive $\Longleftrightarrow G$ is knotless

ϕ is primitive \Longleftrightarrow

 both of ϕ_{G-e} and $\phi_{G / e}$ are primitiveTheorem 3
Suppose $\phi(H) \xrightarrow{\Delta Y} \phi^{\prime}(G)$,
where the 3-cycle in $\phi(H)$ bounds a disk.
Then
$\phi(H)$ is primitive $\Longleftrightarrow \phi^{\prime}(G)$ is primitive

$$
Y \Delta \text { - and } \Delta Y \text {-exchange }
$$

Remark
Theorem 2 and 3 also hold on knotless.

Graph minor

Theorem 4
"Primitive" \mathcal{P} is a minor-closed property.

Theorem 5
$\Omega(\mathcal{P}) \supset\left(K_{7}\right.$-family $) \cup\left(K_{3,3,1,1}\right.$-family $)$

Remark
$\exists G \in \Omega(\mathcal{P})$ - $\left(K_{7}\right.$-family $) \cup\left(K_{3,3,1,1}\right.$-family $)$

Proof of Remark
Foisy graph F is intrinsically knotted.
$\Rightarrow F$ is not primitive.
$\Rightarrow \exists G \in \Omega(\mathcal{P})$ s.t. $G \prec F$
$\Rightarrow G \notin\left(K_{7}\right.$-family $) \cup\left(K_{3,3,1,1}\right.$-family $)$

(planar graph) $*\left(v^{+}, v^{-}\right)$is primitive.

$K_{7}-e$ is a minor of planar* $\left(v^{+}, v^{-}\right)$

Proposition 1

F : Foisy graph
\widehat{F}^{\prime} : the regular projection of $F^{\prime}=F-e$
Then
any spatial embedding of F^{\prime} obtained from \widehat{F}^{\prime} contains a non-free handcuff graph.

Non-free handcuff graphs included in $\phi\left(F^{\prime}\right)$

Problem 1

Any embedding of F^{\prime} contains a non-trivial knot or a non-free Handcuff graph.

Remark
If Problem 1 is true, then $\Omega(\mathcal{P}) \neq \Omega(\mathcal{K} \mathcal{L})$.

Primitive embedding

Theorem 7
 If G has no disjoint cycles, then
 ϕ is primitive $\Longleftrightarrow \phi$ is flat

Theorem 8
Any primitive embedding of H_{n} forms:

1. a 2-bridge link with an upper tunnel if $n=1$.
2. a 2-bridge link with an upper tunnel and a lower tunnel if $n=2$.
3. a ($2, q$)-torus link with three parallel tunnels if $n=3$.

H_{1}

H_{2}

H_{3}

Primitive embedding of $H_{n}(n=1,2,3)$

Theorem 9
An n-component link contained in a primitive embedding of a connected graph has bridge number n.

Conjecture 2
Primitive embeddings of a 5-connected graph are unique up to reflections.

Theorem 10

A planar graph has a unique primitive embedding if and only if it has no disjoint cycles.

Moreover, if a planar graph has disjoint cycles, then it has infinitely many primitive embeddings.

Theorem 11
Let G be a graph in the Petersen family. Then for any link contained in a primitive embedding of G is either the trivial link or the Hopf link.

The Petersen graph has a unique primitive embedding.

Conjecture 3
Any graph in the Petersen family has a unique primitive embedding.

Proof

Lemma 1

\mathcal{C} : a property preserved under taking minors, multiplication of edges, adding loops, and $Y \Delta$-exchanges.
H : a graph obtained from G by a ΔY exchange.

Suppose that G does not have \mathcal{C} and suppose that H is a forbidden graph for \mathcal{C}.

Then G is also a forbidden graph for \mathcal{C}.

Proof of Theorem 5

K_{7}-family and $K_{3,3,1,1}$-family are not primitive since they are intrinsically knotted.
K_{7}-family and $K_{3,3,1,1}$-family are obtained from terminal graphs H_{12} and C_{14} in K_{7}-family and Q_{2}, Q_{3} and R_{1} in $K_{3,3,1,1}$-family by $Y \Delta$ exchanges.

Let G be one of these terminal graphs.
It can be checked that for any edge $e, G-e$ and G / e are planar graphs joined with two vertices.

By Theorem 6, $G-e$ and G / e are primitive, hence G is a forbidden graph for \mathcal{P}.

We note that \mathcal{P} is preserved under taking minors, multiplication of edges, adding loops, and $Y \Delta$-exchanges.

Now, by Lemma 1, all graphs in K_{7}-family and $K_{3,3,1,1}$-family are forbidden graphs for \mathcal{P}.

Terminal graphs

$$
C_{11} \xrightarrow{\vee} C_{12} \rightarrow C_{13} \rightarrow C_{14}
$$

K_{7}-family

Terminal graphs of the K_{7}-family

$K_{3,3,1,1}$-family

Terminal graphs of the $K_{3,3,1,1}$-family

