Primitive spatial graphs and graph minors

Makoto Ozawa (Komazawa University)

Yukihiro Tsutsumi (Sophia University)

July 22, 2004

Definition

G : graph $\phi: G \to S^3$: embedding

 $\iff \pi_1(S^3 - \phi(G))$ is a free group

 $\iff \forall \text{ cycle } C \subset G, \exists \text{ disk } D \subset S^3,$ s.t. $D \cap \phi(G) = \partial D = \phi(C)$

 ϕ is primitive

 $\iff \forall$ component G_i of G_i , \forall spanning tree T_i of G_i , the bouquet $\phi(G_i)/\phi(T_i)$ is trivial

Fundamental Theorem and Conjecture

← Theorem (Robertson-Seymour-Thomas) – ϕ is flat \iff $\forall H \subset G, \phi|_H$ is free

 $- Theorem (Robertson-Seymour-Thomas) - G is flat \iff G is linkless$

 $G \text{ is primitive } \iff G \text{ is knotless}$

 $Y\Delta$ - and ΔY -exchange

<u>Remark</u>

Theorem 2 and 3 also hold on knotless.

Graph minor

 \frown Theorem 5 \frown $\Omega(\mathcal{P}) \supset (K_7 ext{-family}) \cup (K_{3,3,1,1} ext{-family})$

<u>Remark</u>

 $\exists G \in \Omega(\mathcal{P}) - (K_7\text{-family}) \cup (K_{3,3,1,1}\text{-family})$

Proof of Remark

Foisy graph F is intrinsically knotted.

- \Rightarrow F is not primitive.
- $\Rightarrow \exists G \in \Omega(\mathcal{P}) \text{ s.t. } G \prec F$
- $\Rightarrow G \notin (K_7\text{-family}) \cup (K_{3,3,1,1}\text{-family})$

Proposition 1 —

F : Foisy graph

 \widehat{F}' : the regular projection of F'=F-e Then

any spatial embedding of F' obtained from \widehat{F}' contains a non-free handcuff graph.

Non-free handcuff graphs included in $\phi(F')$

Any embedding of F' contains a non-trivial knot or a non-free Handcuff graph.

<u>Remark</u> If Problem 1 is true, then $\Omega(\mathcal{P}) \neq \Omega(\mathcal{KL})$.

Primitive embedding

If G has no disjoint cycles, then ϕ is primitive $\iff \phi$ is flat

Any primitive embedding of H_n forms :

- 1. a 2-bridge link with an upper tunnel if n = 1.
- 2. a 2-bridge link with an upper tunnel and a lower tunnel if n = 2.
- 3. a (2,q)-torus link with three parallel tunnels if n = 3.

Primitive embedding of H_n (n = 1, 2, 3)

Theorem 9 — An n-component link contained in a primitive embedding of a connected graph has bridge number n.

Primitive embeddings of a 5-connected graph are unique up to reflections.

Theorem 10

A planar graph has a unique primitive embedding if and only if it has no disjoint cycles.

Moreover, if a planar graph has disjoint cycles, then it has infinitely many primitive embeddings.

Theorem 11 — Let G be a graph in the Petersen family. Then for any link contained in a primitive embedding of G is either the trivial link or the Hopf link.

Theorem 12 — Theorem 12 — The Petersen graph has a unique primitive embedding.

Any graph in the Petersen family has a unique primitive embedding.

Proof

 \mathcal{C} : a property preserved under taking minors, multiplication of edges, adding loops, and $Y\Delta$ -exchanges.

H : a graph obtained from G by a $\Delta Y\text{-}$ exchange.

Suppose that G does not have C and suppose that H is a forbidden graph for C.

Then G is also a forbidden graph for C.

Proof of Theorem 5

 K_7 -family and $K_{3,3,1,1}$ -family are not primitive since they are intrinsically knotted.

 K_7 -family and $K_{3,3,1,1}$ -family are obtained from terminal graphs H_{12} and C_{14} in K_7 -family and Q_2 , Q_3 and R_1 in $K_{3,3,1,1}$ -family by $Y\Delta$ exchanges.

Let G be one of these terminal graphs.

It can be checked that for any edge e, G-e and G/e are planar graphs joined with two vertices.

By Theorem 6, G - e and G/e are primitive, hence G is a forbidden graph for \mathcal{P} .

We note that \mathcal{P} is preserved under taking minors, multiplication of edges, adding loops, and $Y\Delta$ -exchanges.

Now, by Lemma 1, all graphs in K_7 -family and $K_{3,3,1,1}$ -family are forbidden graphs for \mathcal{P} .

Terminal graphs

Terminal graphs of the K_7 -family

 $K_{3,3,1,1}$ -family

Terminal graphs of the $K_{3,3,1,1}$ -family