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1. Introduction

Let B be a 3-ball and t = t1 ∪ . . .∪ tn a union of mutually disjoint n arcs properly
embedded in B. Then we call the pair (B, t) an n-string tangle. We say that an
n-string tangle (B, t) is trivial if (B, t) is homeomorphic to (D× I, {x1, . . . , xn}× I)
as pairs, where D is a disk and xi is a point in intD (i = 1, . . . , n). According to [1],

we say that (B, t) is essential if cl(∂B−N(t)) is incompressible and ∂-incompressible
in cl(B − N(t)). And, according to [4], we say that (B, t) is free if π1(B − t) is a
free group. We note that (B, t) is free if and only if cl(B − N(t)) is a handlebody
([3, 5.2]).

Let K be a knot in S3 and S a 2-sphere in S3 intersecting K in 2n points. Then
the pair (S3, K) is decomposed by S into two n-string tangles (B1, t1) and (B2, t2),
and the union (B1, t1) ∪S (B2, t2) is called an n-string tangle decomposition of K.
An n-string tangle decomposition (B1, t1) ∪S (B2, t2) is said to be essential (resp.

free) if both (B1, t1) and (B2, t2) are essential (resp. free). We say that two n-string
tangle decompositions (B1, t1)∪S (B2, t2) and (C1, s1)∪R (C2, s2) are isotopic if there
exists an isotopy f : S2 × I → S3 of a 2-sphere S2 in S3 such that f(S2 × 0) = S,

f(S2 × 1) = R and f((S2 ∩ K) × I) ⊂ K.
For a knot K, we define the n-string tangle number Tn(K) of K as the number of

essential n-string tangle decompositions of K modulo isotopy.
Then Gordon-Reid’s result is stated as follows.

Theorem 1.1. [1] Let K be a knot which admits an inessential free 2-string tangle
decomposition. Then Tn(K) = 0 for any n.

In this paper, we will show the following theorem that expands [7, Corollary 1.2].

Theorem 1.2. Let K be a knot which admits an essential free 2-string tangle de-

composition. Then T2(K) = 1 and Tn(K) = 0 for all n 6= 2.

2. Preliminaries

In this section, we consider how to prove Theorem 1.2.
According to [6], an n-string tangle (B, t) is said to be indivisible if for any disk D

properly embedded in B intersecting t in one point in its interior, D cuts off a trivial
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1-string tangle from (B, t). An n-string tangle decomposition (B1, t1) ∪S (B2, t2) of
a knot in S3 is said to be indivisible if both (B1, t1) and (B2, t2) are indivisible.
Suppose that a knot in S3 admits a divisible essential n-string tangle decomposition
(B1, t1) ∪S (B2, t2), and that (B1, t1) is divisible by a disk D. Let (B11, t11) and

(B12, t12) be the tangles divised by D from (B1, t1). Then we have the following
proposition.

Proposition 2.1. Both tangle decompositions (B11, t11) ∪ (B12 ∪ B2, t12 ∪ t2) and

(B12, t12) ∪ (B11 ∪ B2, t11 ∪ t2) are essential tangle decompositions of K.

This proposition says that any essential tangle decomposition of a knot can be
divised into some indivisible essential tangle decompositions of the knot. Conversely,
any essential tangle decomposition of a knot can be obtained from some indivisible

essential tangle decompositions of the knot by ‘tubing operations’. Therefore to
prove Theorem 1.2, it is enough to prove the following theorem.

Theorem 2.2. Let K be a knot in S3 which admits an essential free 2-string tangle

decomposition (B1, t1)∪S(B2, t2). Then any indivisible essential tangle decomposition
is isotopic to (B1, t1) ∪S (B2, t2).

3. Natures of free tangles

In this section, we study on natures of free 2-string tangles.
First, we review a result of Gordon-Reid and Morimoto.

Lemma 3.1. [1],[5] Let M be an orientable closed 3-manifold with a genus two
Heegaard splitting (V1, V2). If M contains a 2-sphere S such that each component of
S ∩V1 is a non-separating disk in V1 and S ∩V2 is incompressible and not ∂-parallel

in V2, then M has a lens space or S2 × S1 summand.

The following Lemmas 3.2 and 3.3 follow Lemma 3.1.

Lemma 3.2. Let (B, t) be a free 2-string tangle and S a 2-sphere in intB inter-

secting t transversely. If S − t is incompressible in B − t, then one of the following
conclusions holds.

(1) S bounds a trivial 1-string tangle.
(2) S is isotopic rel.t to ∂B.

Proof. Glue a 3-ball B ′ to B along their boundaries. Put V1 = B ′ ∪ N(t; B) and
V2 = cl(B − N(t; B)). Then (V1, V2) is a genus two Heegaard splitting of the 3-
sphere B ∪B ′, each component of S ∩ V1 is a non-separating disk in V1, and S ∩ V2

is incompressible in V2. In consequence of this observations and Lemma 3.1, S ∩ V2

is ∂-parallel in V2. Therefore S ∩ V2 is an annulus or a 2-sphere with four holes. In
the formar case, we obtain the conclusion (1), and in the latter case, we obtain the
conclusion (2).
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Lemma 3.3. Let (B, t1 ∪ t2) be a free 2-string tangle, and let P be a planar surface
properly embedded in B such that each component of ∂P separates two points of ∂ti

in ∂B for each i = 1, 2. If P − (t1 ∪ t2) is incompressible in B − (t1 ∪ t2), then one
of the following conclusions holds.

(1) P is an annulus in B−(t1∪t2) which is isotopic to an annulus in ∂B−(t1∪t2).
(2) P is a disk intersecting ti in one point for each i = 1, 2 which is isotopic

rel.(t1 ∪ t2) to a disk in ∂B.
(3) P is an annulus intersecting only one component of t1∪ t2 in two points which

is obtained from two disks D1 and D2 of (2) by a tubing operation, where D1 and
D2 are isotopic to ∂B into the different directions.

Proof. Let C be a 3-ball and E1 ∪ . . .∪E|∂P | be a union of mutually disjoint parallel
|∂P | disks properly embedded in C . Glue C to B so that ∂C = ∂B and ∂(E1 ∪
. . . ∪ E|∂P |) = ∂P . Put V1 = C ∪ N(t1 ∪ t2; B), V2 = cl(B − N(t1 ∪ t2; B)) and

S = P ∪ E1 ∪ . . . ∪ E|∂P |. Then (V1, V2) is a genus two Heegaard splitting of the
3-sphere B ∪C , each component of S ∩V1 is a non-separating disk in V1, and S ∩V2

is incompressible in V2. In consequence of this observations and Lemma 3.1, S ∩ V2

is ∂-parallel in V2. Therefore we have the following cases.

(1) P is an annulus and disjoint from t1 ∪ t2.
(2) P is a disk and intersects t1 and t2 in one point respectively.
(3) P is an annulus and intersects only one component, say t1, of t1 ∪ t2 in two

points.
In cases (1) and (2), we have the conclusions (1) and (2) respectively. In case (3),

since S ∩ V2 is ∂-parallel in V2, there is an embedding f : (S ∩ V2) × I → V2 such
that f((S ∩ V2)× {0}) = S ∩ V2 and ∂f((S ∩ V2)× I)− S ∩ V2 ⊂ ∂V2. Let a be the

core of an annulus N(t2; B) ∩ cl(B − N(t2; B)) with a ⊂ intf((S ∩ V2) × {1}). Put

A = f(f−1(a) × I) and Â = A ∪ d, where d is a disk bounded by a in N(t2; B) and

intersects t2 in one point. Then by compressing P along Â, we have two disks D1

and D2 of (2). Moreover the embedding f |cl(S∩V2−N(a;S∩V2)) shows that D1 and D2

are isotopic to ∂B into the different directions.

4. Proof of Theorem 2.2

In this section, we prove Theorem 2.2.
Let K be a knot in S3 which admits an essential free 2-string tangle decomposition

(B1, t1) ∪S (B2, t2), and let (C1, s1) ∪R (C2, s2) be an indivisible essential tangle

decomposition of K. We may assume that S ∩ R = (S − K) ∩ (R − K) consists of
loops, and assume that |S ∩R| is minimal among all 2-string tangle decompositions
isotopic to (C1, s1) ∪R (C2, s2).

Claim 4.1. If |S∩R| = 0, then (C1, s1)∪R (C2, s2) is isotopic to (B1, t1)∪S (B2, t2).
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Proof. This is due to Lemma 3.2.

From now on, we suppose that |S ∩ R| 6= 0.

Claim 4.2. S ∩R consists of mutually parallel loops in S −K that split four points
of S ∩ K into pairs of two points in S.

Proof. By the incompressibility of R −K in S3 −K and the minimality of |S ∩R|,
each component of S ∩R is an essential loop in S−K. Further, by the indivisibility
of (C1, s1) ∪R (C2, s2), no loop of S ∩R bounds a disk D in S which intersects K in
one point. Thus we have the conclusion of Claim 4.2.

Since K is a connected simple closed curve, by Claim 4.2, each component of

R ∩ Bi satisfies the hypothesis of Lemma 3.3 for either i = 1 or 2. If there is a
component of R ∩ Bi which is of (1) or (2) in Lemma 3.3, then this contradicts
the minimality of |S ∩ R|. Hence any component of R ∩ Bi is of (3) in Lemma

3.3. Then we can find a disk D in Bi such that D ∩ ti = intD ∩ ti =one point
and D ∩ (R ∩ Bi) = ∂D ∩ (R ∩ Bi) = ∂D. By the disk D and the indivisibility of
(C1, s1) ∪R (C2, s2), we can isotop a component of R ∩ Bi of (3) so that it becomes
of (2). This contradicts the minimality of |S ∩ R|. These complete the proof of

Theorem 2.2. 2

5. Thin position of knots with free tangle decompositions

In this section, we remark about thin position of knots which admit free 2-string
tangle decompositions.

First, we review the definition of thin position of knots. Let ±∞ be the north and
south poles of S3. Then S3 −{±∞} is naturally homeomorphic to S2 ×R1, and we

have an associated height function h : S3−{±∞} → R1. Let K be a knot in S3 and
let f = {fs}(s ∈ [0, 1]) be an ambient isotopy of S3 such that f1(K) ⊂ S3 − {±∞}
and h|f1(K) is a Morse function. Choose a regular value ti between each pair of
adjacent critical values of f |f1(K). Define the width of K with respect to f to be the

sum over i of the [number of intersections of f1(K) with h−1(ti)], and denote it by
ωf (K). Define the width of K, ω(K), to be the minimum width of K with respect
to f over all f . We say that K is in thin position if it is in a position which realizes

its width.
We say that S is a thin 2-sphere for K with respect to h if S = h−1(t) for some

t which lies between adjacent critical values x and y of h, where x is a minimum
of K lying above t and y is a maximum of K lying below t. Define the height of

K with respect to f to be the [number of thin 2-spheres for f1(K)]+1, and denote
it by htf(K). Define the height of K, ht(K), to be the maximum height of K with
respect to f over all f with ωf (K) = ω(K).

Then Thompson has shown the following theorem.
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Theorem 5.1. [8, Corollary 4] Let K be a knot which admits an inessential free
2-string tangle decomposition. Then ht(K) = 1.

By Theorem 1.2 and [2, Proposition 3.7], we have;

Theorem 5.2. Let K be a knot which admits an essential free 2-string tangle de-
composition. Then ht(K) ≤ 2.

Remark 5.3. [2, Example 5.1] There exists a knot K in Theorem 5.2 such that

ht(K) = 1.
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