Closed incompressible surfaces of genus two in 3-bridge knot complements

Makoto Ozawa (Komazawa University)

May 23, 2006

Bridge number $b(K)$ and genus $g(F)$
$K \subset S^{3}:$ knot
$F \subset S^{3}-K:$ closed incompressible surface

Schubert

Meridionally compression and tubing

F is incompressible $\Rightarrow F^{\prime}$ is also incompressible

F^{\prime} is incompressible $\Rightarrow F$ may not be incompressible

The case that $g(F)=2$

Theorem I
K : 3-bridge knot or link $F \subset S^{3}-K$: closed incompressible and meridionally incompressible surface of genus two \Rightarrow

I-a

I-b

I-C

Theorem II
K : 3-bridge knot or link
$F \subset S^{3}-K$: closed incompressible and meridionally incompressible surface of genus one

Theorem III
K : 3-bridge knot or link $F \subset S^{3}-K$: closed incompressible and meridionally incompressible surface of genus zero \Rightarrow

III-a

III-b

Corollary
Any essential 2 -string tangle decomposing sphere for 3-bridge knots bounds a length 2 or 3 Montesinos tangle.

The case that $g(F) \geq 3$

Problem [Hayashi, 1996]
Does there exist closed incompressible and meridionally incompressible surface of genus greater than 2 in the complement of 3-bridge knots?

Theorem IV
Yes, for all $g \geq 2$.

Theorem [Muñoz-Coto, 2004]
There exists a hyperbolic 3-bridge knot which contains quasi-Fuchsian surfaces of arbitrarily high genus.

totally knotted spatial graph

Proof of Theorem I, II and III

Let $f: S^{3} \rightarrow \mathbb{R}$ be a Morse function with two critical points.

Put K in a bridge position with respect to f.

Let F be a closed incompressible and meridionally incompressible surface.

One of the following holds.

1. K is a split link.
2. K is not thin position.
3. After an isotopy of K and F, there exists a level sphere $S=f^{-1}(x)$ such that each component of $S \cap F$ is essential in both $S-K$ and $F-K$.

> Lemma B
> Let (B, T) be a trivial n-string tangle and P an incompressible surface in (B, T). Then, one of the following holds.
> 1. P is a disk with $P \cap T=\emptyset$ and separates
> (B, T) into two trivial tangles.
> 2. P is a disk with $|P \cap T|=1$ and separates (B, T) into two trivial tangles.
> 3. P is ∂-compressible.

Using Lemma B inductively, we can classify incompressible and meridionally incompressible surfaces in the trivial 3 -string tangle as follows.

disk(0)

disk(2)

disk(1)

disk(3)

annulus(2)-c

annulus(2)-d

By Lemma A and the classification of incompressible and meridionally incompressible surfaces in the trivial 3-string tangle, we obtain Theorem I, II and III.

I-a

I-b

I-C

