A property of diagrams of the trivial knot

Makoto Ozawa
Department of Natural Sciences, Faculty of Arts and Sciences, Komazawa University

Oct 20, 2006

Figure 1: Goeritz's unknot.

Morwen Thistlethwaite's unknot

Figure 3.5. Wolfgang Haken's "Gordian knot."
K : trivial $\Longleftrightarrow \exists S^{2} \supset K$

$$
\Longleftrightarrow \exists D^{2} \text { s.t. } \partial D^{2}=K
$$

$$
\begin{aligned}
& \text { Theorem (Papakyriakopoulos, 1957) } \\
& K: \text { trivial } \Longleftrightarrow \pi_{1}\left(S^{3}-K\right) \cong \mathbb{Z}
\end{aligned}
$$

C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957) 1-26.

Theorem (Haken, 1961)
\exists algorithm to decide whether K is trivial
W. Haken, Theorie der Normalflachen, Acta Math. 105 (1961) 245-375.

Braid presentation

> Theorem (Birman-Menasco, 1992) Every closed braid representative K of the unknot \mathcal{U} may be reduced to the standard 1braid representative U_{1}, by a finite sequence of braid isotopies, destabilizations and exchange moves.
> Moreover there is a complexity function associated to closed braid representative in the sequence, such that each destabilization and exchange move is strictly complexityreducing.
J. Birman and W. Menasco, Studying Links Via Closed Braids V:

The Unlink, Trans. AMS 329 (1992) 585-606.

The left top and bottom sketches define the exchange move.

The right sequence of 5 sketches shows how it replaces a sequence of Markov moves which include braid isotopy, a single stabilization, additional braid isotopy and a single destabilization.

Thin position

> Theorem (Scharlemann, 2004) If the unknot is in bridge position, then either it is in thin position (and so has just a single minimum and maximum) or it may be made thinner via an isotopy that does not raise the width.

Question (Scharlemann)

Suppose $K \subset S^{3}$ is the unknot. Is there an isotopy of K to thin position (i.e. a single minimum and maximum) via an isotopy during which the width is never increasing?
M. Scharlemann, Thin position in the theory of classical knots, in the Handbook of Knot Theory, 2005.

Diagram

```
                        Theorem
    Let D be a diagram without nugatory cross-
ings of a knot K. If D is
- alternating, or
- positive, or
- homogeneous, or
- adequate,
then \(K\) is non-trivial.
```

R. H. Crowell, Genus of alternating link types, Ann. of Math. 69 (1959), 258-275.
K. Murasugi, On the genus of the alternating knot II, J. Math. Soc. Japan 10 (1958), 235-248.
J. v. Buskirk, Positive links have positive Conway polynomial, Springer Lecture Notes in Math. 1144 (1983), 146-159.
P. R. Cromwell, Homogeneous links, J. London Math. Soc.39 (1989) 535-552.
M. B. Thistlethwaite, On the Kauffman polynomial of an adequate link, Invent. Math. 93 (1998) 285-296.

Problem
What kind of property do diagrams of the trivial knot have?

Hereafter, we assume that a diagram is \mathbf{I} reduced and II-reduced, i.e. there is no part in a diagram whose crossing number can be reduced by a Reidemeister I-move and II-move.

Furthermore, we assume that a diagram is prime, i.e. which has at least one crossing and any loop intersecting it in two points cuts off an arc.

Tools

K : trivial $\Longleftrightarrow E(K)$: solid torus

Proposition
\forall orientable surface ($\neq D^{2}$) properly embedded in the solid torus is

1. compressible or
2. incompressible and ∂-parallel annulus

Policy

$$
\left[\begin{array}{l}
50500505000500050500 \\
\text { We do not let } K \text { bound a disk, but let } K \\
\text { bound a surface except for a disk, and ex- } \\
\text { amine intersections of a compressing disk } \\
\text { for the surface and regions of diagram. }
\end{array}\right.
$$

Approach 1. canonical Seifert surface F

F is compressible.

$$
\begin{aligned}
& F=F_{1} * F_{2}: \text { Murasugi sum } \\
& F: \text { compressible } \\
& \Rightarrow F_{1}: \text { compressible or } F_{2}: \text { compressible }
\end{aligned}
$$

Hence, we may assume that every Seifert circle is non-nested.
D. Gabai, The Murasugi sum is a natural geometric operation, Contemp. Math. 20 (1983) 131-143.

Approach 2. checkerboard surface F

$$
\begin{aligned}
& \widetilde{F}=F \tilde{\times} \partial I \\
& \widetilde{F} \text { is compressible in the outside of } F \tilde{\times} I .
\end{aligned}
$$

D : compressing disk
$R=S^{2}-F \tilde{\times} I$: complementary region of $F \tilde{\times} I$
 We examine intersections of D and R.

We assume that the number of components of $D \cap R$ is minimal.

Example. 4-crossing diagram of the righthanded trefoil without nugatory crossings. The checkerboard surface is compressible.

In this case, $|D \cap R|=5$.

(Continuation of Proof)

If $|D \cap R|=0$, then ∂D is not essential in \tilde{F}.

If $|D \cap R|=1$, then

A diagram is II-reducible.

Hereafter, we assume that $|D \cap R|>1$, and focus on outermost arcs in D.

Claim
Any outermost arc α connects \pm-adjacent crossings.

Proof.
(Case1)

If α connects a same crossing, then

We have two loops obtained from arcs α and β, which intersects in one point.

This contradicts the Jordan Curve Theorem.
(Case 2)

If α connects two different crossings, then

In Case 2-a, the diagram is composite.

In Case 2-b, the diagram is composite or two crossings are \pm-adjacent.

Next, we pay attention to an outermost fork.

Then by Claim, we have

We call such a loop as a boundary of a subdisk in $D \pm$-Menasco loop.

In summary,

Theorem
Any I-reduced, II-reduced, prime diagram of the trivial knot has a \pm-Menasco loop passing through $2 n$-crossings $c_{1}, c_{2}, \ldots, c_{2 n}$, where $n \geq 2$ and $c_{2 i-1}$ is \pm-adjacent to $c_{2 i}$ for $i=1, \ldots, n-1$.

Remark. In Theorem, we can take a compressing disk D so that ∂D does not pass through a one side of a crossing more than once.

Development. It is possible to state that for a checkerboard surface F, whether \widetilde{F} is compressible by means of all \pm-Menasco loop coming from all subdisk in D.

Application.

Any descending diagram gives the trivial knot. A loop appearing in a generalized Reidemeister move I forms a + -Menasco loop satisfying the condition in Theorem.

Next example is borrowed from Ochiai's book.

This diagram of the trivial knot has no r-wave for any $r \geq 0$.

At each stage, there exists a \pm-Menasco loop satisfying the condition in Theorem or it is not I-reduced or not II-reduced.

In the former case, a \pm-Menasco loop can be used to simplify the diagram if it has successive three adjacent crossings, and in the latter case, the crossing number can be reduced by a Reidemeister move I or II.
M. Ochiai, Introduction to knot theory by computer, Makino publisher, 1996. (In Japanese)

Final example is somewhat artificial.

This diagram is 2-almost alternating, that is, obtained from an alternating diagram by twice crossing changes on it.

There does not exist a \pm-Menasco loop satisfying the condition in Theorem. Hence, this knot is non-trivial.

Note that Tsukamoto characterized almost alternating diagarms of the trivial knot.
T. Tsukamoto, The almost alternating diagrams of the trivial knot, preprint available at http://lanl.arxiv.org/abs/math.GT/0605018.

