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Morwen Thistlethwaite’s unknot





Definition� �

K : trivial ⇐⇒ ∃S2 ⊃ K

⇐⇒ ∃D2 s.t. ∂D2 = K� �

Theorem (Papakyriakopoulos, 1957)� �

K : trivial ⇐⇒ π1(S
3 − K) ∼= Z

� �

C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of

knots, Ann. of Math. 66 (1957) 1-26.

Theorem (Haken, 1961)� �

∃ algorithm to decide whether K is trivial
� �

W. Haken, Theorie der Normalflachen, Acta Math. 105 (1961)

245-375.



Braid presentation

Theorem (Birman-Menasco, 1992)� �

Every closed braid representative K of the

unknot U may be reduced to the standard 1-

braid representative U1, by a finite sequence

of braid isotopies, destabilizations and ex-

change moves.

Moreover there is a complexity function as-

sociated to closed braid representative in

the sequence, such that each destabilization

and exchange move is strictly complexity-

reducing.
� �

J. Birman and W. Menasco, Studying Links Via Closed Braids V:

The Unlink, Trans. AMS 329 (1992) 585-606.



The left top and bottom sketches define the

exchange move.

The right sequence of 5 sketches shows how

it replaces a sequence of Markov moves which

include braid isotopy, a single stabilization, ad-

ditional braid isotopy and a single destabiliza-

tion.



Thin position

Theorem (Scharlemann, 2004)� �

If the unknot is in bridge position, then ei-

ther it is in thin position (and so has just a

single minimum and maximum) or it may be

made thinner via an isotopy that does not

raise the width.� �

Question (Scharlemann)� �

Suppose K ⊂ S3 is the unknot. Is there an

isotopy of K to thin position (i.e. a single

minimum and maximum) via an isotopy dur-

ing which the width is never increasing?
� �

M. Scharlemann, Thin position in the theory of classical knots, in

the Handbook of Knot Theory, 2005.



Diagram

Theorem� �

Let D be a diagram without nugatory cross-

ings of a knot K . If D is

• alternating, or

• positive, or

• homogeneous, or

• adequate,

then K is non-trivial.
� �

R. H. Crowell, Genus of alternating link types, Ann. of Math. 69

(1959), 258-275.

K. Murasugi, On the genus of the alternating knot II, J. Math.

Soc. Japan 10 (1958), 235-248.

J. v. Buskirk, Positive links have positive Conway polynomial,

Springer Lecture Notes in Math. 1144 (1983), 146-159.

P. R. Cromwell, Homogeneous links, J. London Math. Soc. 39

(1989) 535-552.

M. B. Thistlethwaite, On the Kauffman polynomial of an adequate

link, Invent. Math. 93 (1998) 285-296.



Problem� �

What kind of property do diagrams of the

trivial knot have?
� �

Hereafter, we assume that a diagram is I-

reduced and II-reduced, i.e. there is no part

in a diagram whose crossing number can be re-

duced by a Reidemeister I-move and II-move.

Furthermore, we assume that a diagram is

prime, i.e. which has at least one crossing

and any loop intersecting it in two points cuts

off an arc.



Tools

K : trivial ⇐⇒ E(K) : solid torus

Proposition� �

∀ orientable surface (	= D2) properly embed-

ded in the solid torus is

1. compressible or

2. incompressible and ∂-parallel annulus
� �



Policy

�����������������������������������������

We do not let K bound a disk, but let K

bound a surface except for a disk, and ex-

amine intersections of a compressing disk

for the surface and regions of diagram.



Approach 1. canonical Seifert surface F

F is compressible.

Theorem (Gabai)� �

F = F1 ∗ F2 : Murasugi sum

F : compressible

⇒ F1: compressible or F2 : compressible
� �

F F F1 2

*=

Hence, we may assume that every Seifert circle

is non-nested.

D. Gabai, The Murasugi sum is a natural geometric operation,

Contemp. Math. 20 (1983) 131–143.



Approach 2. checkerboard surface F

F̃ = F ×̃∂I

F̃ is compressible in the outside of F ×̃I.

D : compressing disk

R = S2 −F ×̃I : complementary region of F ×̃I

�����������������������������������������

We examine intersections of D and R.

We assume that the number of components of

D ∩ R is minimal.



Example. 4-crossing diagram of the right-
handed trefoil without nugatory crossings.
The checkerboard surface is compressible.
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In this case, |D ∩ R| = 5.



(Continuation of Proof)

If |D ∩ R| = 0, then ∂D is not essential in F̃ .

If |D ∩ R| = 1, then

D

1 2

1 2

A diagram is II-reducible.

Hereafter, we assume that |D ∩ R| > 1,

and focus on outermost arcs in D.



Claim� �

Any outermost arc α connects ±-adjacent

crossings.
� �

adjacent, +-adjacent, −-adjacent



Proof.

(Case1)

If α connects a same crossing, then

D F
Bi

We have two loops obtained from arcs α and

β, which intersects in one point.

This contradicts the Jordan Curve Theorem.



(Case 2)

If α connects two different crossings, then

D F

B

Bi

j

F

B

Bi

j

Case 2-a Case 2-b

In Case 2-a, the diagram is composite.

In Case 2-b, the diagram is composite or two

crossings are ±-adjacent.



Next, we pay attention to an outermost fork.

1
2

3
4

Then by Claim, we have

1

2

3

4

We call such a loop as a boundary of a subdisk
in D ±-Menasco loop.



In summary,

Theorem� �

Any I-reduced, II-reduced, prime diagram

of the trivial knot has a ±-Menasco loop

passing through 2n-crossings c1, c2, . . . , c2n,

where n ≥ 2 and c2i−1 is ±-adjacent to c2i

for i = 1, . . . , n − 1.
� �

Remark. In Theorem, we can take a com-

pressing disk D so that ∂D does not pass

through a one side of a crossing more than

once.

Development. It is possible to state that for

a checkerboard surface F , whether F̃ is com-

pressible by means of all ±-Menasco loop

coming from all subdisk in D.



Application.

Any descending diagram gives the trivial knot.

A loop appearing in a generalized Reidemeister

move I forms a +-Menasco loop satisfying the

condition in Theorem.



Next example is borrowed from Ochiai’s book.

This diagram of the trivial knot has no r-wave

for any r ≥ 0.

At each stage, there exists a ±-Menasco loop

satisfying the condition in Theorem or it is not

I-reduced or not II-reduced.

In the former case, a ±-Menasco loop can be

used to simplify the diagram if it has succes-

sive three adjacent crossings, and in the lat-

ter case, the crossing number can be reduced

by a Reidemeister move I or II.

M. Ochiai, Introduction to knot theory by computer, Makino pub-

lisher, 1996. (In Japanese)
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I

I



Final example is somewhat artificial.

This diagram is 2-almost alternating, that is,

obtained from an alternating diagram by twice

crossing changes on it.

There does not exist a ±-Menasco loop sat-

isfying the condition in Theorem. Hence, this

knot is non-trivial.

Note that Tsukamoto characterized almost al-

ternating diagarms of the trivial knot.

T. Tsukamoto, The almost alternating diagrams of the trivial knot,

preprint available at http://lanl.arxiv.org/abs/math.GT/0605018.




