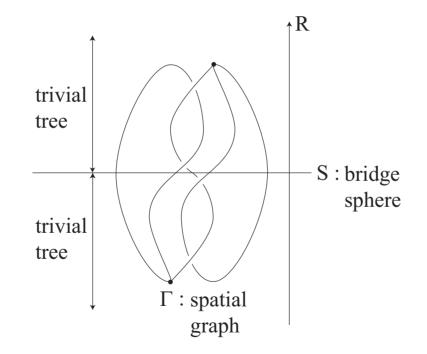
Bridge position and the representativity of spatial graphs

Makoto Ozawa Komazawa University

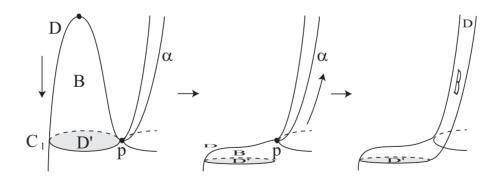
September 29, 2010

Definition (Bridge position of spatial graphs)



$F\supset \Gamma$: a closed surface

\frown Lemma (Essential Morse position) \frown (F, Γ) can be isotoped so that F has no inessential saddle point.



Theorem (Otal)

Any two n-bridge positions of the trivial knot are isotopic.

Theorem 1

Let Γ be in a bridge position. Then Γ is trivial if and only if there exists a 2-sphere F containing Γ such that F intersects the bridge sphere S in a single loop. Γ : a non-trivial spatial graph

— Definition

We define the *representativity* of (F, Γ) as

$$r(F, \Gamma) = \min_{D \in \mathcal{D}_F} |\partial D \cap \Gamma|$$

where \mathcal{D}_F is the set of all compressing disks for F in S^3 .



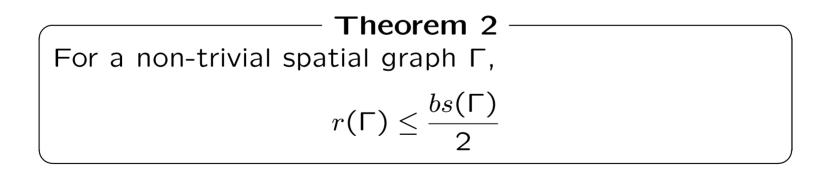
Definition
We define the *representativity* of
$$\Gamma$$
 as
 $r(\Gamma) = \max_{F \in \mathcal{F}} r(F, \Gamma)$
where \mathcal{F} is the set of all closed surfaces containing Γ .

Definition

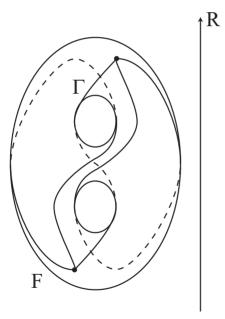
We define the *bridge string number* of Γ as

$$bs(\Gamma) = \min_{\Gamma \in \mathcal{BP}_{\Gamma}} |\Gamma \cap S|$$

where \mathcal{BP}_{Γ} is the set of all bridge position of Γ .



Example 2



$$2=r(F,\Gamma) \leq r(\Gamma) \leq \frac{bs(\Gamma)}{2} \leq \frac{5}{2}$$

 \therefore r(Γ)=2

Proposition

- 1. $2 \leq r(K) \leq b(K)$ for a non-trivial knot K
- 2. $r(K) = \min\{p,q\}$ for a (p,q)-torus knot K
- 3. r(K) = 2 for a 2-bridge knot K

Theorem 3 1. $r(K) \leq 3$ for an algebraic knot K2. r(K) = 3 for a (p,q,r)-pretzel knot K if and only if $(p,q,r) = \pm(-2,3,3)$ or $\pm(-2,3,5)$

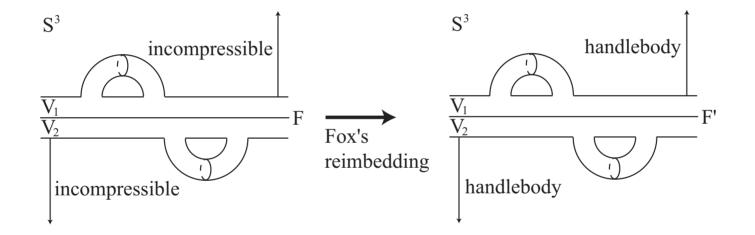
r(K) = 2 for an alternating knot K

Conjecture 1 is true for torus knots and Montesinos knots.

Theorem 4

For any closed surface F with $g(F) \ge g(G)$ and for any integer n, there exists a spatial graph Γ of G contained in F such that $r(F, \Gamma) \ge n$.

Proof of Theorem 4 (Idea)



 V_i : the characteristic compression body for F

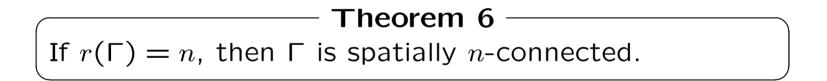
Definition

 Γ is *totally knotted* if $\partial N(\Gamma)$ is incompressible in $S^3 - \Gamma$.

Theorem 5 If $r(\Gamma) > \beta_1(G)$, then Γ contains a connected totally knotted spatial subgraph.

Definition

 Γ is *spatially n*-connected if it has no essential tangle decomposing sphere *S* with $|\Gamma \cap S| < n$.



G: a non-planar graph

The representativity of (F,G) is defined as $r(F,G) = \min_{C \in \mathcal{C}_F} |C \cap G|,$ where \mathcal{C}_F is the set of all essential loops in F.

DefinitionThe representativity of G is defined as
$$r(G) = \max_{F \in \mathcal{F}} r(F,G),$$
where \mathcal{F} is the set of all closed surfaces containing G.

Strong embedding conjecture –

For a 2-connected non-planar graph G, $r(G) \ge 2$.

Strong spatial embedding conjecture For a non-trivial spatial graph Γ of a 2-connected graph G, $r(\Gamma) \ge 2$.